TY - JOUR A1 - Hortobagyi, Tibor A1 - Deak, Dorina A1 - Farkas, Dora A1 - Blenyesi, Eszter A1 - Torok, Katalin A1 - Granacher, Urs A1 - Tollar, Jozsef T1 - Effects of exercise dose and detraining duration on mobility at late midlife BT - a randomized clinical trial JF - Gerontology N2 - Background: Office workers near retirement tend to be sedentary and can be prone to mobility limitations and diseases. We examined the dose effects of exergaming volume and duration of detraining on motor and cognitive function in office workers at late midlife to reduce sedentariness and mobility limitations. Methods: In an assessor-blinded randomized trial, 160 workers aged 55-65 years performed physically active video games in a nonimmersive form of virtual reality (exergaming) in small, supervised groups for 1 h, 1x, 2x, or 3x/week for 8 weeks followed by detraining for 8 and 16 weeks. Exergaming comprises high-intensity, full-body sensorimotor coordination, balance, endurance, and strengthening exercises. The primary outcome was the 6-minute walk test (6MWT), and secondary outcomes were body mass, self-reported physical activity, sleep quality, Berg Balance Scale, Short Physical Performance Battery, fast gait speed, dynamic balance, heart rate recovery after step test, and 6 cognitive tests. Results: The 3 groups were not different in any of the outcomes at baseline (all p > 0.05). The outcomes were stable and had acceptable reliability (intraclass correlation coefficients >= 0.334) over an 8-week control period. Training produced an inverted U-shaped dose response of no (1x), most (2x), and medium (3x/week) effects of exergaming volume in most motor and selected cognitive outcomes. The distance walked in the 6MWT (primary outcome) increased most (94 m, 19%, p < 0.05), medium (57 m, 12%, p < 0.05), and least (4 m, 1%) after exergaming 2x, 3x, or 0x (control) (all different p < 0.05). The highest responders tended to retain the exercise effects over 8 weeks of detraining, independent of training volume. This maintenance effect was less consistent after 16 weeks of detraining. Conclusion: Less was more during training and lasted longer after detraining. A medium dose volume of exergaming produced the largest clinically meaningful improvements in mobility and selected cognitive tests in 60-year-old office workers with mild mobility limitations and intact cognition. KW - exercise KW - dose response KW - walking capacity KW - cognitive function Y1 - 2021 U6 - https://doi.org/10.1159/000513505 SN - 0304-324X SN - 1423-0003 VL - 67 IS - 4 SP - 403 EP - 414 PB - Karger CY - Basel ER - TY - JOUR A1 - Gebel, Arnd A1 - Busch, Aglaja A1 - Stelzel, Christine A1 - Hortobágyi, Tibor A1 - Granacher, Urs T1 - Effects of Physical and Mental Fatigue on Postural Sway and Cortical Activity in Healthy Young Adults JF - Frontiers in Human Neuroscience N2 - Physical fatigue (PF) negatively affects postural control, resulting in impaired balance performance in young and older adults. Similar effects on postural control can be observed for mental fatigue (MF) mainly in older adults. Controversial results exist for young adults. There is a void in the literature on the effects of fatigue on balance and cortical activity. Therefore, this study aimed to examine the acute effects of PF and MF on postural sway and cortical activity. Fifteen healthy young adults aged 28 ± 3 years participated in this study. MF and PF protocols comprising of an all-out repeated sit-to-stand task and a computer-based attention network test, respectively, were applied in random order. Pre and post fatigue, cortical activity and postural sway (i.e., center of pressure displacements [CoPd], velocity [CoPv], and CoP variability [CV CoPd, CV CoPv]) were tested during a challenging bipedal balance board task. Absolute spectral power was calculated for theta (4–7.5 Hz), alpha-2 (10.5–12.5 Hz), beta-1 (13–18 Hz), and beta-2 (18.5–25 Hz) in frontal, central, and parietal regions of interest (ROI) and baseline-normalized. Inference statistics revealed a significant time-by-fatigue interaction for CoPd (p = 0.009, d = 0.39, Δ 9.2%) and CoPv (p = 0.009, d = 0.36, Δ 9.2%), and a significant main effect of time for CoP variability (CV CoPd: p = 0.001, d = 0.84; CV CoPv: p = 0.05, d = 0.62). Post hoc analyses showed a significant increase in CoPd (p = 0.002, d = 1.03) and CoPv (p = 0.003, d = 1.03) following PF but not MF. For cortical activity, a significant time-by-fatigue interaction was found for relative alpha-2 power in parietal (p < 0.001, d = 0.06) areas. Post hoc tests indicated larger alpha-2 power increases after PF (p < 0.001, d = 1.69, Δ 3.9%) compared to MF (p = 0.001, d = 1.03, Δ 2.5%). In addition, changes in parietal alpha-2 power and measures of postural sway did not correlate significantly, irrespective of the applied fatigue protocol. No significant changes were found for the other frequency bands, irrespective of the fatigue protocol and ROI under investigation. Thus, the applied PF protocol resulted in increased postural sway (CoPd and CoPv) and CoP variability accompanied by enhanced alpha-2 power in the parietal ROI while MF led to increased CoP variability and alpha-2 power in our sample of young adults. Potential underlying cortical mechanisms responsible for the greater increase in parietal alpha-2 power after PF were discussed but could not be clearly identified as cause. Therefore, further future research is needed to decipher alternative interpretations. KW - balance KW - cognitive/muscular fatigue KW - EEG KW - theta KW - alpha-2 Y1 - 2022 U6 - https://doi.org/10.3389/fnhum.2022.871930 SN - 1662-5161 VL - 16 SP - 1 EP - 14 PB - Frontiers Media S.A. CY - Lausanne, Schweiz ER - TY - JOUR A1 - Negyesi, Janos A1 - Hortobagyi, Tibor A1 - Hill, Jessica A1 - Granacher, Urs A1 - Nagatomi, Ryoichi T1 - Can compression garments reduce the deleterious effects of physical exercise on muscle strength? BT - a systematic review and meta-analyses JF - Sports medicine N2 - Background The use of compression garments (CGs) during or after training and competition has gained popularity in the last few decades. However, the data concerning CGs' beneficial effects on muscle strength-related outcomes after physical exercise remain inconclusive. Objective The aim was to determine whether wearing CGs during or after physical exercise would facilitate the recovery of muscle strength-related outcomes. Methods A systematic literature search was conducted across five databases (PubMed, SPORTDiscus, Web of Science, Scopus, and EBSCOhost). Data from 19 randomized controlled trials (RCTs) including 350 healthy participants were extracted and meta-analytically computed. Weighted between-study standardized mean differences (SMDs) with respect to their standard errors (SEs) were aggregated and corrected for sample size to compute overall SMDs. The type of physical exercise, the body area and timing of CG application, and the time interval between the end of the exercise and subsequent testing were assessed. Results CGs produced no strength-sparing effects (SMD [95% confidence interval]) at the following time points (t) after physical exercise: immediately <= t < 24 h: - 0.02 (- 0.22 to 0.19), p = 0.87; 24 <= t < 48 h: - 0.00 (- 0.22 to 0.21), p = 0.98; 48 <= t < 72 h: - 0.03 (- 0.43 to 0.37), p = 0.87; 72 <= t < 96 h: 0.14 (- 0.21 to 0.49), p = 0.43; 96 h <= t: 0.26 (- 0.33 to 0.85), p = 0.38. The body area where the CG was applied had no strength-sparing effects. CGs revealed weak strength-sparing effects after plyometric exercise. Conclusion Meta-analytical evidence suggests that wearing a CG during or after training does not seem to facilitate the recovery of muscle strength following physical exercise. Practitioners, athletes, coaches, and trainers should reconsider the use of CG as a tool to reduce the effects of physical exercise on muscle strength. Y1 - 2022 U6 - https://doi.org/10.1007/s40279-022-01681-4 SN - 0112-1642 SN - 1179-2035 VL - 52 IS - 9 SP - 2159 EP - 2175 PB - Springer CY - Northcote ER - TY - JOUR A1 - Hortobagyi, Tibor A1 - Granacher, Urs A1 - Fernandez-del-Olmo, Miguel A1 - Howatson, Glyn A1 - Manca, Andrea A1 - Deriu, Franca A1 - Taube, Wolfgang A1 - Gruber, Markus A1 - Marquez, Gonzalo A1 - Lundbye-Jensen, Jesper A1 - Colomer-Poveda, David T1 - Functional relevance of resistance training-induced neuroplasticity in health and disease JF - Neuroscience & biobehavioral reviews : official journal of the International Behavioral Neuroscience Society N2 - Repetitive, monotonic, and effortful voluntary muscle contractions performed for just a few weeks, i.e., resistance training, can substantially increase maximal voluntary force in the practiced task and can also increase gross motor performance. The increase in motor performance is often accompanied by neuroplastic adaptations in the central nervous system. While historical data assigned functional relevance to such adaptations induced by resistance training, this claim has not yet been systematically and critically examined in the context of motor performance across the lifespan in health and disease. A review of muscle activation, brain and peripheral nerve stimulation, and imaging data revealed that increases in motor performance and neuroplasticity tend to be uncoupled, making a mechanistic link between neuroplasticity and motor performance inconclusive. We recommend new approaches, including causal mediation analytical and hypothesis-driven models to substantiate the functional relevance of resistance training-induced neuroplasticity in the improvements of gross motor function across the lifespan in health and disease. KW - Maximal voluntary contraction (MVC) KW - strength training KW - Electromyography (EMG) KW - Transcranial magnetic brain stimulation (TMS) KW - Electroencephalography (EEG) KW - Functional magnetic resonance imaging (fMRI) KW - athletic performance KW - aging KW - Parkinson's disease KW - Multiple sclerosis KW - stroke KW - directed acyclic graphs KW - causal mediation analysis Y1 - 2020 U6 - https://doi.org/10.1016/j.neubiorev.2020.12.019 SN - 0149-7634 SN - 1873-7528 VL - 122 SP - 79 EP - 91 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Aloui, Ali A1 - Tayech, Amel A1 - Arbi Mejri, Mohamed A1 - Makhlouf, Issam A1 - Clark, Cain C. T. A1 - Granacher, Urs A1 - Zouhal, Hassane A1 - Ben Abderrahman, Abderraouf T1 - Reliability and Validity of a New Taekwondo-Specific Change-of-Direction Speed Test With Striking Techniques in Elite Taekwondo Athletes: A Pilot Study JF - Frontiers in Physiology N2 - The purpose of this study was to examine the test-retest reliability, and convergent and discriminative validity of a new taekwondo-specific change-of-direction (COD) speed test with striking techniques (TST) in elite taekwondo athletes. Twenty (10 males and 10 females) elite (athletes who compete at national level) and top-elite (athletes who compete at national and international level) taekwondo athletes with an average training background of 8.9 ± 1.3 years of systematic taekwondo training participated in this study. During the two-week test-retest period, various generic performance tests measuring COD speed, balance, speed, and jump performance were carried out during the first week and as a retest during the second week. Three TST trials were conducted with each athlete and the best trial was used for further analyses. The relevant performance measure derived from the TST was the time with striking penalty (TST-TSP). TST-TSP performances amounted to 10.57 ± 1.08 s for males and 11.74 ± 1.34 s for females. The reliability analysis of the TST performance was conducted after logarithmic transformation, in order to address the problem of heteroscedasticity. In both groups, the TST demonstrated a high relative test-retest reliability (intraclass correlation coefficients and 90% compatibility limits were 0.80 and 0.47 to 0.93, respectively). For absolute reliability, the TST’s typical error of measurement (TEM), 90% compatibility limits, and magnitudes were 4.6%, 3.4 to 7.7, for males, and 5.4%, 3.9 to 9.0, for females. The homogeneous sample of taekwondo athletes meant that the TST’s TEM exceeded the usual smallest important change (SIC) with 0.2 effect size in the two groups. The new test showed mostly very large correlations with linear sprint speed (r = 0.71 to 0.85) and dynamic balance (r = −0.71 and −0.74), large correlations with COD speed (r = 0.57 to 0.60) and vertical jump performance (r = −0.50 to −0.65), and moderate correlations with horizontal jump performance (r = −0.34 to −0.45) and static balance (r = −0.39 to −0.44). Top-elite athletes showed better TST performances than elite counterparts. Receiver operating characteristic analysis indicated that the TST effectively discriminated between top-elite and elite taekwondo athletes. In conclusion, the TST is a valid, and sensitive test to evaluate the COD speed with taekwondo specific skills, and reliable when considering ICC and TEM. Although the usefulness of the TST is questioned to detect small performance changes in the present population, the TST can detect moderate changes in taekwondo-specific COD speed. KW - taekwondo-specific testing KW - sport-specific performance KW - striking combat sports KW - sensitivity KW - taekwondo electronic scoring system Y1 - 2022 U6 - https://doi.org/10.3389/fphys.2022.774546 SN - 1664-042X VL - 13 SP - 1 EP - 15 PB - Frontiers CY - Lausanne, Schweiz ER - TY - JOUR A1 - Pavillon, Thomas A1 - Tourny, Claire A1 - Ben Abderrahman, Abderraouf A1 - Salhi, Iyed A1 - Zouita, Sghaeir A1 - Rouissi, Mehdi A1 - Hackney, Anthony C. A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Sprint and jump performances in highly trained young soccer players of different chronological age BT - Effects of linear VS. CHANGE–OF–DIRECTION sprint training JF - Journal of Exercise Science & Fitness N2 - Objective The aim of this study was to examine the effects of two different sprint-training regimes on sprint and jump performances according to age in elite young male soccer players over the course of one soccer season. Methods Players were randomly assigned to two training groups. Group 1 performed systematic change-of-direction sprints (CODST, U19 [n = 9], U17 [n = 9], U15 [n = 10]) while group 2 conducted systematic linear sprints (LST, U19 [n = 9], U17 [n = 9], U15 [n = 9]). Training volumes were similar between groups (40 sprints per week x 30 weeks = 1200 sprints per season). Pre and post training, all players performed tests for the assessment of linear and slalom sprint speed (5-m and 10-m), countermovement jump, and maximal aerobic speed performance. Results For all physical fitness measures, the baseline-adjusted means data (ANCOVA) across the age groups showed no significant differences between LST and CODST at post (0.061 < p < 0.995; 0.0017 < d < 1.01). The analyses of baseline-adjusted means for all physical fitness measures for U15, U17, and U19 (LST vs. CODST) revealed no significant differences between LST and CODST for U15 (0.213 < p < 0.917; 0.001 < d < 0.087), U17 (0.132 < p < 0.976; 0.001 < d < 0.310), and U19 (0.300 < p < 0.999; 0.001 < d < 0.049) at post. Conclusions The results from this study showed that both, LST and CODST induced significant changes in the sprint, lower limbs power, and aerobic performances in young elite soccer players. Since no significant differences were observed between LST and CODST, the observed changes are most likely due to training and/or maturation. Therefore, more research is needed to elucidate whether CODST, LST or a combination of both is beneficial for youth soccer athletes’ performance development. KW - Football KW - Repeated sprint KW - Performance KW - Speed Y1 - 2020 U6 - https://doi.org/10.1016/j.jesf.2020.10.003 SN - 1728-869x VL - 19 IS - 2 SP - 81 EP - 90 PB - Elsevier CY - Singapore ER - TY - JOUR A1 - Hammami, Raouf A1 - Chaouachi, Anis A1 - Makhlouf, Issam A1 - Granacher, Urs A1 - Behm, David George T1 - Associations Between Balance and Muscle Strength, Power Performance in Male Youth Athletes of Different Maturity Status JF - Pediatric exercise science N2 - Balance, strength and power relationships may contain important information at various maturational stages to determine training priorities. Purpose: The objective was to examine maturity-specific relationships of static/dynamic balance with strength and power measures in young male athletes. Method: Soccer players (N = 130) aged 10-16 were assessed with the Stork and Y balance (YBT) tests. Strength/power measures included back extensor muscle strength, standing long jump (SLJ), countermovement jump (CMJ), and 3-hop jump tests. Associations between balance with strength/power variables were calculated according to peak-height-velocity (PHV). Results: There were significant medium-large sized correlations between all balance measures with back extensor strength (r =.486.791) and large associations with power (r =.511.827). These correlation coefficients were significantly different between pre-PHV and circa PHV as well as pre-PHV and post-PHV with larger associations in the more mature groups. Irrespective of maturity-status, SLJ was the best strength/ power predictor with the highest proportion of variance (12-47%) for balance (i.e., Stork eyes opened) and the YBT was the best balance predictor with the highest proportion of variance (43-78%) for all strength/ power variables. Conclusion: The associations between balance and muscle strength/power measures in youth athletes that increase with maturity may imply transfer effects from balance to strength/power training and vice versa in youth athletes. KW - children KW - adolescents KW - training KW - peak height velocity KW - relationships Y1 - 2016 U6 - https://doi.org/10.1123/pes.2015-0231 SN - 0899-8493 SN - 1543-2920 VL - 28 SP - 521 EP - 534 PB - Human Kinetics Publ. CY - Champaign ER - TY - JOUR A1 - Madadi-Shad, Morteza A1 - Jafarnezhadgero, Amir Ali A1 - Zago, Matteo A1 - Granacher, Urs T1 - Effects of varus knee alignment on gait biomechanics and lower limb muscle activity in boys BT - A cross sectional study JF - Gait & posture N2 - Background: There is evidence that frontal plane lower limb malalignment (e.g., genu varus) is a risk factor for knee osteoarthritis development. However, only scarce information is available on gait biomechanics and muscle activity in boys with genu varus. Research question: To examine the effects of knee varus alignment on lower limb kinematics, kinetics and muscular activity during walking at self-selected speed in boys with genu varus versus healthy age-matched controls. Methods: Thirty-six boys were enrolled in this study and divided into a group of boys with genu varus (n = 18; age: 11.66 +/- 1.64 years) and healthy controls (n = 18; age: 11.44 +/- 1.78 years). Three-dimensional kinematics, ground reaction forces, loading rates, impulses and free moments of both limbs were recorded during five walking trials at self-selected speed. Surface electromyography was recorded for rectus femoris and vastus lateralis/medialis muscles. Results: No significant between-group differences were found for gait speed. Participants in the genu varus group versus controls showed larger peak knee flexion (p = 0.030; d = 0.77), peak knee adduction (p < 0.001; d = 1.63), and peak ankle eversion angles (p < 0.001; d = 2.06). Significantly higher peak ground reaction forces were found at heel contact (vertical [p = 0.002; d = 1.16] and posterior [p < 0.001; d = 1.63] components) and at push off (vertical [p = 0.010; d = 0.93] and anterior [p < 0.001; d = 1.34] components) for genu varus versus controls. Peak medial ground reaction force (p = 0.032; d = 0.76), vertical loading rate (p < 0.001; d = 1.52), anterior-posterior impulse (p = 0.011; d = 0.92), and peak negative free moment (p = 0.030; d = 0.77) were significantly higher in genu varus. Finally, time to reach peak forces was significantly shorter in genu varus boys compared with healthy controls (p < 0.01; d = 0.73-1.60). The genu varus group showed higher activities in vastus lateralis (p < 0.001; d = 1.82) and vastus medialis (p = 0.013; d = 0.90) during the loading phase of walking. Significance: Our study revealed genu varus specific gait characteristics and muscle activities. Greater knee adduction angle in genu varus boys may increase the load on the medial compartment of the knee joint. The observed characteristics in lower limb biomechanics and muscle activity could play a role in the early development of knee osteoarthritis in genu varus boys. KW - Bow leg KW - Quadriceps strength KW - Ground reaction force KW - Pediatric gait KW - Electromyography Y1 - 2019 U6 - https://doi.org/10.1016/j.gaitpost.2019.05.030 SN - 0966-6362 SN - 1879-2219 VL - 72 SP - 69 EP - 75 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Noroozi, Raha A1 - Fakhri Mirzanag, Ehsan A1 - Granacher, Urs A1 - de Souza Castelo Oliveira, Anderson T1 - The Impact of COVID-19 and Muscle Fatigue on Cardiorespiratory Fitness and Running Kinetics in Female Recreational Runners JF - Frontiers in Physiology N2 - Background: There is evidence that fully recovered COVID-19 patients usually resume physical exercise, but do not perform at the same intensity level performed prior to infection. The aim of this study was to evaluate the impact of COVID-19 infection and recovery as well as muscle fatigue on cardiorespiratory fitness and running biomechanics in female recreational runners. Methods: Twenty-eight females were divided into a group of hospitalized and recovered COVID-19 patients (COV, n = 14, at least 14 days following recovery) and a group of healthy age-matched controls (CTR, n = 14). Ground reaction forces from stepping on a force plate while barefoot overground running at 3.3 m/s was measured before and after a fatiguing protocol. The fatigue protocol consisted of incrementally increasing running speed until reaching a score of 13 on the 6–20 Borg scale, followed by steady-state running until exhaustion. The effects of group and fatigue were assessed for steady-state running duration, steady-state running speed, ground contact time, vertical instantaneous loading rate and peak propulsion force. Results: COV runners completed only 56% of the running time achieved by the CTR (p < 0.0001), and at a 26% slower steady-state running speed (p < 0.0001). There were fatigue-related reductions in loading rate (p = 0.004) without group differences. Increased ground contact time (p = 0.002) and reduced peak propulsion force (p = 0.005) were found for COV when compared to CTR. Conclusion: Our results suggest that female runners who recovered from COVID-19 showed compromised running endurance and altered running kinetics in the form of longer stance periods and weaker propulsion forces. More research is needed in this area using larger sample sizes to confirm our study findings. KW - hospitalization KW - running mechanics KW - ground reaction forces KW - virus infection KW - COVID-19 Y1 - 2022 U6 - https://doi.org/10.3389/fphys.2022.942589 SN - 1664-042X VL - 13 SP - 1 EP - 10 PB - Frontiers CY - Lausanne, Schweiz ER - TY - JOUR A1 - Lesinski, Melanie A1 - Schmelcher, Alina A1 - Herz, Michael A1 - Puta, Christian A1 - Gabriel, Holger A1 - Arampatzis, Adamantios A1 - Laube, Gunnar A1 - Büsch, Dirk A1 - Granacher, Urs T1 - Maturation-, age-, and sex-specific anthropometric and physical fitness percentiles of German elite young athletes JF - Plos One N2 - The aim of this study was to establish maturation-, age-, and sex-specific anthropometric and physical fitness percentile reference values of young elite athletes from various sports. Anthropometric (i.e., standing and sitting body height, body mass, body mass index) and physical fitness (i.e., countermovement jump, drop jump, change-of-direction speed [i.e., T-test], trunk muscle endurance [i.e., ventral Bourban test], dynamic lower limbs balance [i.e., Y-balance test], hand grip strength) of 703 male and female elite young athletes aged 8–18 years were collected to aggregate reference values according to maturation, age, and sex. Findings indicate that body height and mass were significantly higher (p<0.001; 0.95≤d≤1.74) in more compared to less mature young athletes as well as with increasing chronological age (p<0.05; 0.66≤d≤3.13). Furthermore, male young athletes were significantly taller and heavier compared to their female counterparts (p<0.001; 0.34≤d≤0.50). In terms of physical fitness, post-pubertal athletes showed better countermovement jump, drop jump, change-of-direction, and handgrip strength performances (p<0.001; 1.57≤d≤8.72) compared to pubertal athletes. Further, countermovement jump, drop jump, change-of-direction, and handgrip strength performances increased with increasing chronological age (p<0.05; 0.29≤d≤4.13). In addition, male athletes outperformed their female counterpart in the countermovement jump, drop jump, change-of-direction, and handgrip strength (p<0.05; 0.17≤d≤0.76). Significant age by sex interactions indicate that sex-specific differences were even more pronounced with increasing age. Conclusively, body height, body mass, and physical fitness increased with increasing maturational status and chronological age. Sex-specific differences appear to be larger as youth grow older. Practitioners can use the percentile values as approximate benchmarks for talent identification and development. KW - biological maturation KW - reliability KW - validity KW - performance KW - physiology KW - maturity KW - injury KW - talent Y1 - 2020 U6 - https://doi.org/10.1371/journal.pone.0237423 SN - 1932-6203 VL - 15 IS - 8 PB - Plos One CY - San Francisco, California ER -