TY - JOUR A1 - Mühlbauer, Thomas A1 - Mettler, Claude A1 - Roth, Ralf A1 - Granacher, Urs T1 - One-leg standing performance and muscle activity: Are there limb differences? JF - Journal of applied biomechanics N2 - The purpose of this study was to compare static balance performance and muscle activity during one-leg standing on the dominant and nondominant leg under various sensory conditions with increased levels of task difficulty. Thirty healthy young adults (age: 23 +/- 2 years) performed one-leg standing tests for 30 s under three sensory conditions (ie, eyes open/firm ground; eyes open/foam ground [elastic pad on top of the balance plate]; eyes closed/firm ground). Center of pressure displacements and activity of four lower leg muscles (ie, m. tibialis anterior [TA], m. soleus [SOL], m. gastrocnemius medialis [GAS], m. peroneus longus [PER]) were analyzed. An increase in sensory task difficulty resulted in deteriorated balance performance (P < .001, effect size [ES] = .57-2.54) and increased muscle activity (P < .001, ES = .50-1.11) for all but two muscles (ie, GAS, PER). However, regardless of the sensory condition, one-leg standing on the dominant as compared with the nondominant limb did not produce statistically significant differences in various balance (P > .05, ES = .06-.22) and electromyographic (P > .05, ES = .03-.13) measures. This indicates that the dominant and the nondominant leg can be used interchangeably during static one-leg balance testing in healthy young adults. KW - postural control KW - electromyography KW - sensory input KW - task difficulty Y1 - 2014 U6 - https://doi.org/10.1123/jab.2013-0230 SN - 1065-8483 SN - 1543-2688 VL - 30 IS - 3 SP - 407 EP - 414 PB - Human Kinetics Publ. CY - Champaign ER - TY - GEN A1 - Kibele, Armin A1 - Classen, Claudia A1 - Mühlbauer, Thomas A1 - Granacher, Urs A1 - Behm, David George T1 - Metastability in plyometric training on unstable surfaces BT - a pilot study T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background In the past, plyometric training (PT) has been predominantly performed on stable surfaces. The purpose of this pilot study was to examine effects of a 7-week lower body PT on stable vs. unstable surfaces. This type of exercise condition may be denoted as metastable equilibrium. Methods Thirty-three physically active male sport science students (age: 24.1 ± 3.8 years) were randomly assigned to a PT group (n = 13) exercising on stable (STAB) and a PT group (n = 20) on unstable surfaces (INST). Both groups trained countermovement jumps, drop jumps, and practiced a hurdle jump course. In addition, high bar squats were performed. Physical fitness tests on stable surfaces (hexagonal obstacle test, countermovement jump, hurdle drop jump, left-right hop, dynamic and static balance tests, and leg extension strength) were used to examine the training effects. Results Significant main effects of time (ANOVA) were found for the countermovement jump, hurdle drop jump, hexagonal test, dynamic balance, and leg extension strength. A significant interaction of time and training mode was detected for the countermovement jump in favor of the INST group. No significant improvements were evident for either group in the left-right hop and in the static balance test. Conclusions These results show that lower body PT on unstable surfaces is a safe and efficient way to improve physical performance on stable surfaces. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 606 KW - instability resistance training KW - stretch-shortening cycle KW - physical fitness test KW - balance training Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429013 SN - 1866-8364 IS - 606 ER - TY - JOUR A1 - Lesinski, Melanie A1 - Mühlbauer, Thomas A1 - Buesch, Dirk A1 - Granacher, Urs T1 - Effects of complex training on strength and speed performance in athletes: A systematic review effects of complex training on athletic performance JF - Sportverletzung, Sportschaden : Grundlagen, Prävention, Rehabilitation N2 - Background: Post-activation potentiation (PAP) can elicit acute performance enhancements in variables of strength, power, and speed. However, it is unresolved whether the frequent integration of PAP eliciting conditioning activities in training (i.e., complex training) results in long-term adaptations. In this regard, it is of interest to know whether complex training results in larger performance enhancements as compared to more traditional and isolated training regimens (e. g., resistance training). Thus, this systematic literature review summarises the current state of the art regarding the effects of complex training on measures of strength, power, and speed in recreational, subelite, and elite athletes. Further, it provides information on training volume and intensities that proved to be effective. Methods: Our literature search included the electronic databases Pubmed, SportDiscus, and Web of Science (1995 to September 2013). In total, 17 studies met the inclusionary criteria for review. Ten studies examined alternating complex training and 7 studies sequenced complex training. Results: Our findings indicated small to large effects for both alternating complex training (countermovement jump height: +7.4 % [ESd = -0.43]; squat jump height: +9.8 % [ESd = -0.66]; sprint time: -2.4% [ESd = 0.63]) and sequenced complex training (countermovement jump height: +6.0 % [ESd = -0.83]; squat jump height: +11.9% [ESd = -0.97], sprint time: -0.7% [ESd = 0.52]) in measures of power and speed. As compared to more traditional training regimens, alternating and sequenced complex training showed only small effects in measures of strength, power, and speed. A more detailed analysis of alternating complex training revealed larger effects in countermovement jump height in recreational athletes (+9.7% [ESd = -0.57]) as compared to subelite and elite athletes (+2.7% [ESd = -0.15]). Based on the relevant and currently available literature, missing data (e.g., time for rest interval) and diverse information regarding training volume and intensity do not allow us to establish evidence-based dose-response relations for complex training. Conclusion: Complex training represents an effective training regimen for athletes if the goal is to enhance strength, power, and speed. Studies with high methodological quality have to be conducted in the future to elucidate whether complex training is less, similar, or even more effective compared to more traditional training regimens. Finally, it should be clarified whether alternated and/or sequenced conditioning activities implemented in complex training actually elicit acute PAP effects. KW - resistance training KW - plyometric training KW - dose-response relation KW - athletic performance KW - elite sport Y1 - 2014 U6 - https://doi.org/10.1055/s-0034-1366145 SN - 0932-0555 SN - 1439-1236 VL - 28 IS - 2 SP - 85 EP - 107 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Granacher, Urs A1 - Mühlbauer, Thomas A1 - Gschwind, Y. J. A1 - Pfenninger, B. A1 - Kressig, R. W. T1 - Assessment and training of strength and balance for fall prevention in the elderly. Recommendations of an interdisciplinary expert panel JF - Zeitschrift für Gerontologie und Geriatrie N2 - The proportion of elderly people in societies of western industrialized countries is continuously rising. Biologic aging induces deficits in balance and muscle strength/power in old age, which is responsible for an increased prevalence of falls. Therefore, nationwide and easy-to-administer fall prevention programs have to be developed in order to contribute to the autonomy and quality of life in old age and to help reduce the financial burden on the public health care system due to the treatment of fall-related injuries. This narrative (qualitative) literature review deals with a) the reasons for an increased prevalence of falls in old age, b) important clinical tests for fall-risk assessment, and c) evidence-based intervention/training programs for fall prevention in old age. The findings of this literature review are based on a cost-free practice guide that is available to the public (via the internet) and that was created by an expert panel (i.e., geriatricians, exercise scientists, physiotherapists, geriatric therapists). The present review provides the scientific foundation of the practice guide. KW - Fall risk KW - Resistance training KW - Preventive therapy KW - Exercise therapy KW - Frail elderly Y1 - 2014 U6 - https://doi.org/10.1007/s00391-013-0509-5 SN - 0948-6704 SN - 1435-1269 VL - 47 IS - 6 SP - 513 EP - 525 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Golle, Kathleen A1 - Granacher, Urs A1 - Hoffmann, Martin A1 - Wick, Ditmar A1 - Mühlbauer, Thomas T1 - Effect of living area and sports club participation on physical fitness in children BT - a 4 year longitudinal study N2 - Background: Cross-sectional studies detected associations between physical fitness, living area, and sports participation in children. Yet, their scientific value is limited because the identification of cause-and-effect relationships is not possible. In a longitudinal approach, we examined the effects of living area and sports club participation on physical fitness development in primary school children from classes 3 to 6. Methods: One-hundred and seventy-two children (age: 9-12 years; sex: 69 girls, 103 boys) were tested for their physical fitness (i.e., endurance [9-min run], speed [50-m sprint], lower- [triple hop] and upper-extremity muscle strength [1-kg ball push], flexibility [stand-and-reach], and coordination [star coordination run]). Living area (i.e., urban or rural) and sports club participation were assessed using parent questionnaire. Results: Over the 4 year study period, urban compared to rural children showed significantly better performance development for upper- (p = 0.009, ES = 0.16) and lower-extremity strength (p < 0.001, ES = 0.22). Further, significantly better performance development were found for endurance (p = 0.08, ES = 0.19) and lower-extremity strength (p = 0.024, ES = 0.23) for children continuously participating in sports clubs compared to their non-participating peers. Conclusions: Our findings suggest that sport club programs with appealing arrangements appear to represent a good means to promote physical fitness in children living in rural areas. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 360 KW - motor performance KW - youth KW - primary school KW - maturation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401418 ER - TY - JOUR A1 - Granacher, Urs A1 - Schellbach, Jörg A1 - Klein, Katja A1 - Prieske, Olaf A1 - Baeyens, Jean-Pierre A1 - Mühlbauer, Thomas T1 - Effects of core strength training using stable versus unstable surfaces on physical fitness in adolescents BT - a randomized controlled trial JF - BMC sports science, medicine & rehabilitation N2 - Background It has been demonstrated that core strength training is an effective means to enhance trunk muscle strength (TMS) and proxies of physical fitness in youth. Of note, cross-sectional studies revealed that the inclusion of unstable elements in core strengthening exercises produced increases in trunk muscle activity and thus provide potential extra training stimuli for performance enhancement. Thus, utilizing unstable surfaces during core strength training may even produce larger performance gains. However, the effects of core strength training using unstable surfaces are unresolved in youth. This randomized controlled study specifically investigated the effects of core strength training performed on stable surfaces (CSTS) compared to unstable surfaces (CSTU) on physical fitness in school-aged children. Methods Twenty-seven (14 girls, 13 boys) healthy subjects (mean age: 14 ± 1 years, age range: 13–15 years) were randomly assigned to a CSTS (n = 13) or a CSTU (n = 14) group. Both training programs lasted 6 weeks (2 sessions/week) and included frontal, dorsal, and lateral core exercises. During CSTU, these exercises were conducted on unstable surfaces (e.g., TOGU© DYNAIR CUSSIONS, THERA-BAND© STABILITY TRAINER). Results Significant main effects of Time (pre vs. post) were observed for the TMS tests (8-22%, f = 0.47-0.76), the jumping sideways test (4-5%, f = 1.07), and the Y balance test (2-3%, f = 0.46-0.49). Trends towards significance were found for the standing long jump test (1-3%, f = 0.39) and the stand-and-reach test (0-2%, f = 0.39). We could not detect any significant main effects of Group. Significant Time x Group interactions were detected for the stand-and-reach test in favour of the CSTU group (2%, f = 0.54). Conclusions Core strength training resulted in significant increases in proxies of physical fitness in adolescents. However, CSTU as compared to CSTS had only limited additional effects (i.e., stand-and-reach test). Consequently, if the goal of training is to enhance physical fitness, then CSTU has limited advantages over CSTS. KW - Resistance training KW - Trunk muscle strength KW - Physical fitness Y1 - 2014 U6 - https://doi.org/10.1186/2052-1847-6-40 SN - 2052-1847 VL - 6 PB - BioMed Central CY - London ER - TY - JOUR A1 - Granacher, Urs A1 - Lacroix, Andre A1 - Roettger, Katrin A1 - Gollhofer, Albert A1 - Mühlbauer, Thomas T1 - Relationships between trunk muscle strength, spinal mobility, and balance performance in older adults JF - Journal of aging and physical activity N2 - This study investigated associations between variables of trunk muscle strength (TMS), spinal mobility, and balance in seniors. Thirty-four seniors (sex: 18 female, 16 male; age: 70 +/- 4 years; activity level: 13 +/- 7 hr/week) were tested for maximal isometric strength (MIS) of the trunk extensors, flexors, lateral flexors, rotators, spinal mobility, and steady-state, reactive, and proactive balance. Significant correlations were detected between all measures of TMS and static steady-state balance (r = .43.57, p < .05). Significant correlations were observed between specific measures of TMS and dynamic steady-state balance (r = .42.55, p < .05). No significant correlations were found between all variables of TMS and reactive/proactive balance and between all variables of spinal mobility and balance. Regression analyses revealed that TMS explains between 1-33% of total variance of the respective balance parameters. Findings indicate that TMS is related to measures of steady-state balance which may imply that TMS promoting exercises should be integrated in strength training for seniors. KW - elderly KW - core KW - gait KW - postural balance KW - force KW - physical performance Y1 - 2014 U6 - https://doi.org/10.1123/JAPA.2013-0108 SN - 1063-8652 SN - 1543-267X VL - 22 IS - 4 SP - 490 EP - 498 PB - Human Kinetics Publ. CY - Champaign ER - TY - JOUR A1 - Meyer, Ursina A1 - Ernst, Dominique A1 - Schott, Silvia A1 - Riera, Claudia A1 - Hattendorf, Jan A1 - Romkes, Jacqueline A1 - Granacher, Urs A1 - Göpfert, Beat A1 - Kriemler, Susi T1 - Validation of two accelerometers to determine mechanical loading of physical activities in children JF - Journal of sports sciences N2 - The purpose of this study was to assess the validity of accelerometers using force plates (i.e., ground reaction force (GRF)) during the performance of different tasks of daily physical activity in children. Thirteen children (10.1 (range 5.4-15.7)years, 3 girls) wore two accelerometers (ActiGraph GT3X+ (ACT), GENEA (GEN)) at the hip that provide raw acceleration signals at 100Hz. Participants completed different tasks (walking, jogging, running, landings from boxes of different height, rope skipping, dancing) on a force plate. GRF was collected for one step per trial (10 trials) for ambulatory movements and for all landings (10 trials), rope skips and dance procedures. Accelerometer outputs as peak loading (g) per activity were averaged. ANOVA, correlation analyses and Bland-Altman plots were computed to determine validity of accelerometers using GRF. There was a main effect of task with increasing acceleration values in tasks with increasing locomotion speed and landing height (P<0.001). Data from ACT and GEN correlated with GRF (r=0.90 and 0.89, respectively) and between each other (r=0.98), but both accelerometers consistently overestimated GRF. The new generation of accelerometer models that allow raw signal detection are reasonably accurate to measure impact loading of bone in children, although they systematically overestimate GRF. KW - bone KW - impact loading KW - children KW - physical activity KW - ground reaction force Y1 - 2015 U6 - https://doi.org/10.1080/02640414.2015.1004638 SN - 0264-0414 SN - 1466-447X VL - 33 IS - 16 SP - 1702 EP - 1709 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Golle, Kathleen A1 - Mühlbauer, Thomas A1 - Wick, Ditmar A1 - Granacher, Urs T1 - Physical Fitness Percentiles of German Children Aged 9-12 Years: Findings from a Longitudinal Study JF - PLoS one N2 - Background Generating percentile values is helpful for the identification of children with specific fitness characteristics (i. e., low or high fitness level) to set appropriate fitness goals (i. e., fitness/ health promotion and/or long-term youth athlete development). Thus, the aim of this longitudinal study was to assess physical fitness development in healthy children aged 9-12 years and to compute sex-and age-specific percentile values. Methods Two-hundred and forty children (88 girls, 152 boys) participated in this study and were tested for their physical fitness. Physical fitness was assessed using the 50-m sprint test (i. e., speed), the 1-kg ball push test, the triple hop test (i. e., upper-and lower-extremity muscular power), the stand-and-reach test (i. e., flexibility), the star run test (i. e., agility), and the 9-min run test (i. e., endurance). Age-and sex-specific percentile values (i. e., P-10 to P-90) were generated using the Lambda, Mu, and Sigma method. Adjusted (for change in body weight, height, and baseline performance) age-and sex-differences as well as the interactions thereof were expressed by calculating effect sizes (Cohen's d). Results Significant main effects of Age were detected for all physical fitness tests (d = 0.40-1.34), whereas significant main effects of Sex were found for upper-extremity muscular power (d = 0.55), flexibility (d = 0.81), agility (d = 0.44), and endurance (d = 0.32) only. Further, significant Sex by Age interactions were observed for upper-extremity muscular power (d = 0.36), flexibility (d = 0.61), and agility (d = 0.27) in favor of girls. Both, linear and curvilinear shaped curves were found for percentile values across the fitness tests. Accelerated (curvilinear) improvements were observed for upper-extremity muscular power (boys: 10-11 yrs; girls: 9-11 yrs), agility (boys: 9-10 yrs; girls: 9-11 yrs), and endurance (boys: 9-10 yrs; girls: 9-10 yrs). Tabulated percentiles for the 9-min run test indicated that running distances between 1,407-1,507 m, 1,479-1,597 m, 1,423-1,654 m, and 1,433-1,666 m in 9-to 12-year-old boys and 1,262-1,362 m, 1,329-1,434 m, 1,392-1,501 m, and 1,415-1,526 m in 9-to 12-year-old girls correspond to a "medium" fitness level (i. e., P-40 to P-60) in this population. Conclusions The observed differences in physical fitness development between boys and girls illustrate that age- and sex-specific maturational processes might have an impact on the fitness status of healthy children. Our statistical analyses revealed linear (e. g., lower-extremity muscular power) and curvilinear (e. g., agility) models of fitness improvement with age which is indicative of timed and capacity-specific fitness development pattern during childhood. Lastly, the provided age-and sex-specific percentile values can be used by coaches for talent identification and by teachers for rating/ grading of children's motor performance. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0142393 SN - 1932-6203 VL - 10 IS - 11 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Beurskens, Rainer A1 - Gollhofer, Albert A1 - Mühlbauer, Thomas A1 - Cardinale, Marco A1 - Granacher, Urs T1 - Effects of Heavy-Resistance Strength and Balance Training on Unilateral and Bilateral Leg Strength Performance in Old Adults JF - PLoS one N2 - The term "bilateral deficit" (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20-30 years) and old adults (age: > 65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 x /week) at 80% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre-and post-tests included uni-and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni-and bilateral MIF (all p < .001; d = 2.61-3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni-and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0118535 SN - 1932-6203 VL - 10 IS - 2 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Howard, Joshua A1 - Granacher, Urs A1 - Behm, David George T1 - Trunk extensor fatigue decreases jump height similarly under stable and unstable conditions with experienced jumpers JF - European journal of applied physiology N2 - The purpose of this study was to investigate the effects of back extensor fatigue on performance measures and electromyographic (EMG) activity of leg and trunk muscles during jumping on stable and unstable surfaces. Before and after a modified Biering-Sorensen fatigue protocol for the back extensors, countermovement (CMJ) and lateral jumps (LJ) were performed on a force plate under stable and unstable (balance pad on the force plate) conditions. Performance measures for LJ (contact time) and CMJ height and leg and trunk muscles EMG activity were tested in 14 male experienced jumpers during 2 time intervals for CMJ (braking phase, push-off phase) and 5 intervals for LJ (-30 to 0, 0-30, 30-60, 60-90, and 90-120 ms) in non-fatigued and fatigued conditions. A significant main effect of test (fatigue) (p = 0.007, f = 0.57) was observed for CMJ height. EMG analysis showed a significant fatigue-induced decrease in biceps femoris and gastrocnemius activity with CMJ (p = 0.008, f = 0.58 andp = 0.04, f = 0.422, respectively). LJ contact time was not affected by fatigue or surface interaction. EMG activity was significantly lower in the tibialis anterior with LJ following fatigue (p = 0.05, f = 0.405). A test x surface (p = 0.04, f = 0.438) interaction revealed that the non-fatigued unstable CMJ gastrocnemius EMG activity was lower than the non-fatigued stable condition during the onset-of-force phase. The findings revealed that fatiguing the trunk negatively impacts CMJ height and muscle activity during the performance of CMJs. However, skilled jumpers are not additionally affected by a moderately unstable surface as compared to a stable surface. KW - Countermovement jump KW - Instability KW - Balance KW - Crossover fatigue KW - Lateral jumps Y1 - 2015 U6 - https://doi.org/10.1007/s00421-014-3011-x SN - 1439-6319 SN - 1439-6327 VL - 115 IS - 2 SP - 285 EP - 294 PB - Springer CY - New York ER - TY - JOUR A1 - Prieske, Olaf A1 - Mühlbauer, Thomas A1 - Krüger, Tom A1 - Kibele, A. A1 - Behm, David George A1 - Granacher, Urs T1 - Sex-Specific effects of surface instability on drop jump and landing biomechanics JF - International journal of sports medicine N2 - This study investigated sex-specific effects of surface instability on kinetics and lower extremity kinematics during drop jumping and landing. Ground reaction forces as well as knee valgus and flexion angles were tested in 14 males (age: 23 +/- 2 years) and 14 females (age: 24 +/- 3 years) when jumping and landing on stable and unstable surfaces. Jump height was found to be significantly lower (9 %, p < 0.001) when drop jumps were performed on unstable vs. stable surface. Significantly higher peak ground reaction forces were observed when jumping was performed on unstable vs. stable surfaces (5 %, p = 0.022). Regarding frontal plane kinematics during jumping and landing, knee valgus angles were higher on unstable compared to stable surfaces (1932 %, p < 0.05). Additionally, at the onset of ground contact during landings, females showed higher knee valgus angles than males (222 %, p = 0.027). Sagittal plane kinematics indicated significantly smaller knee flexion angles (6-35 %, p < 0.05) when jumping and landing on unstable vs. stable surfaces. During drop jumps and landings, women showed smaller knee flexion angles at ground contact compared to men (27-33 %, p < 0.05). These findings imply that knee motion strategies were modified by surface instability and sex during drop jumps and landings. KW - stretch-shortening cycle KW - ground reaction force KW - knee joint angle KW - injury risk Y1 - 2015 U6 - https://doi.org/10.1055/s-0034-1384549 SN - 0172-4622 SN - 1439-3964 VL - 36 IS - 1 SP - 75 EP - 81 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Hortobágyi, Tibor A1 - Lesinski, Melanie A1 - Gäbler, Martijn A1 - VanSwearingen, Jessie M. A1 - Malatesta, Davide A1 - Granacher, Urs T1 - Effects of three types of exercise interventions on healthy old adults’ gait speed BT - a systematic review and meta-analysis T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background: Habitual walking speed predicts many clinical conditions later in life, but it declines with age. However, which particular exercise intervention can minimize the age-related gait speed loss is unclear. Purpose: Our objective was to determine the effects of strength, power, coordination, and multimodal exercise training on healthy old adults' habitual and fast gait speed. Methods: We performed a computerized systematic literature search in PubMed and Web of Knowledge from January 1984 up to December 2014. Search terms included 'Resistance training', 'power training', 'coordination training', 'multimodal training', and 'gait speed (outcome term). Inclusion criteria were articles available in full text, publication period over past 30 years, human species, journal articles, clinical trials, randomized controlled trials, English as publication language, and subject age C65 years. The methodological quality of all eligible intervention studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. We computed weighted average standardized mean differences of the intervention-induced adaptations in gait speed using a random-effects model and tested for overall and individual intervention effects relative to no-exercise controls. Results: A total of 42 studies (mean PEDro score of 5.0 +/- 1.2) were included in the analyses (2495 healthy old adults; age 74.2 years [64.4-82.7]; body mass 69.9 +/- 4.9 kg, height 1.64 +/- 0.05 m, body mass index 26.4 +/- 1.9 kg/m(2), and gait speed 1.22 +/- 0.18 m/s). The search identified only one power training study, therefore the subsequent analyses focused only on the effects of resistance, coordination, and multimodal training on gait speed. The three types of intervention improved gait speed in the three experimental groups combined (n = 1297) by 0.10 m/s (+/- 0.12) or 8.4 % (+/- 9.7), with a large effect size (ES) of 0.84. Resistance (24 studies; n = 613; 0.11 m/s; 9.3 %; ES: 0.84), coordination (eight studies, n = 198; 0.09 m/s; 7.6 %; ES: 0.76), and multimodal training (19 studies; n = 486; 0.09 m/s; 8.4 %, ES: 0.86) increased gait speed statistically and similarly. Conclusions: Commonly used exercise interventions can functionally and clinically increase habitual and fast gait speed and help slow the loss of gait speed or delay its onset. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 840 KW - resistance training KW - exercise intervention KW - gait speed KW - power training KW - mobility disability Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431150 SN - 1866-8364 ER - TY - GEN A1 - Hortobágyi, Tibor A1 - Lesinski, Melanie A1 - Fernandez‐del‐Olmo, Miguel A1 - Granacher, Urs T1 - Small and inconsistent effects of whole body vibration on athletic performance BT - a systematic review and meta-analysis T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Purpose We quantified the acute and chronic effects of whole body vibration on athletic performance or its proxy measures in competitive and/or elite athletes. Methods Systematic literature review and meta-analysis. Results Whole body vibration combined with exercise had an overall 0.3 % acute effect on maximal voluntary leg force (−6.4 %, effect size = −0.43, 1 study), leg power (4.7 %, weighted mean effect size = 0.30, 6 studies), flexibility (4.6 %, effect size = −0.12 to 0.22, 2 studies), and athletic performance (−1.9 %, weighted mean effect size = 0.26, 6 studies) in 191 (103 male, 88 female) athletes representing eight sports (overall effect size = 0.28). Whole body vibration combined with exercise had an overall 10.2 % chronic effect on maximal voluntary leg force (14.6 %, weighted mean effect size = 0.44, 5 studies), leg power (10.7 %, weighted mean effect size = 0.42, 9 studies), flexibility (16.5 %, effect size = 0.57 to 0.61, 2 studies), and athletic performance (−1.2 %, weighted mean effect size = 0.45, 5 studies) in 437 (169 male, 268 female) athletes (overall effect size = 0.44). Conclusions Whole body vibration has small and inconsistent acute and chronic effects on athletic performance in competitive and/or elite athletes. These findings lead to the hypothesis that neuromuscular adaptive processes following whole body vibration are not specific enough to enhance athletic performance. Thus, other types of exercise programs (e.g., resistance training) are recommended if the goal is to improve athletic performance. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 627 KW - exercise KW - muscle KW - force KW - power KW - skill KW - reflex KW - endocrine KW - metabolism Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431993 SN - 1866-8364 IS - 627 ER - TY - JOUR A1 - Hortobagyi, Tibor A1 - Lesinski, Melanie A1 - Fernandez-del-Olmo, Miguel A1 - Granacher, Urs T1 - Small and inconsistent effects of whole body vibration on athletic performance: a systematic review and meta-analysis JF - European journal of applied physiology N2 - We quantified the acute and chronic effects of whole body vibration on athletic performance or its proxy measures in competitive and/or elite athletes. Systematic literature review and meta-analysis. Whole body vibration combined with exercise had an overall 0.3 % acute effect on maximal voluntary leg force (-6.4 %, effect size = -0.43, 1 study), leg power (4.7 %, weighted mean effect size = 0.30, 6 studies), flexibility (4.6 %, effect size = -0.12 to 0.22, 2 studies), and athletic performance (-1.9 %, weighted mean effect size = 0.26, 6 studies) in 191 (103 male, 88 female) athletes representing eight sports (overall effect size = 0.28). Whole body vibration combined with exercise had an overall 10.2 % chronic effect on maximal voluntary leg force (14.6 %, weighted mean effect size = 0.44, 5 studies), leg power (10.7 %, weighted mean effect size = 0.42, 9 studies), flexibility (16.5 %, effect size = 0.57 to 0.61, 2 studies), and athletic performance (-1.2 %, weighted mean effect size = 0.45, 5 studies) in 437 (169 male, 268 female) athletes (overall effect size = 0.44). Whole body vibration has small and inconsistent acute and chronic effects on athletic performance in competitive and/or elite athletes. These findings lead to the hypothesis that neuromuscular adaptive processes following whole body vibration are not specific enough to enhance athletic performance. Thus, other types of exercise programs (e.g., resistance training) are recommended if the goal is to improve athletic performance. KW - Exercise KW - Muscle KW - Force KW - Power KW - Skill KW - Reflex KW - Endocrine KW - Metabolism Y1 - 2015 U6 - https://doi.org/10.1007/s00421-015-3194-9 SN - 1439-6319 SN - 1439-6327 VL - 115 IS - 8 SP - 1605 EP - 1625 PB - Springer CY - New York ER - TY - JOUR A1 - Granacher, Urs A1 - Prieske, Olaf A1 - Majewski, M. A1 - Büsch, Dirk A1 - Mühlbauer, Thomas T1 - The Role of Instability with Plyometric Training in Sub-elite Adolescent Soccer Players JF - International journal of sports medicine N2 - The purpose of this study was to investigate the effects of plyometric training on stable (SPT) vs. highly unstable surfaces (IPT) on athletic performance in adolescent soccer players. 24 male sub-elite soccer players (age: 15 +/- 1 years) were assigned to 2 groups performing plyometric training for 8 weeks (2 sessions/week, 90min each). The SPT group conducted plyometrics on stable and the IPT group on unstable surfaces. Tests included jump performance (countermovement jump [CMJ] height, drop jump [DJ] height, DJ performance index), sprint time, agility and balance. Statistical analysis revealed significant main effects of time for CMJ height (p<0.01, f=1.44), DJ height (p<0.01, f=0.62), DJ performance index (p<0.05, f=0.60), 0-10-m sprint time (p<0.05, f=0.58), agility (p<0.01, f=1.15) and balance (p<0.05, 0.46f1.36). Additionally, a Training groupxTime interaction was found for CMJ height (p<0.01, f=0.66) in favor of the SPT group. Following 8 weeks of training, similar improvements in speed, agility and balance were observed in the IPT and SPT groups. However, the performance of IPT appears to be less effective for increasing CMJ height compared to SPT. It is thus recommended that coaches use SPT if the goal is to improve jump performance. KW - strength KW - jump KW - speed KW - agility KW - balance Y1 - 2015 U6 - https://doi.org/10.1055/s-0034-1395519 SN - 0172-4622 SN - 1439-3964 VL - 36 IS - 5 SP - 386 EP - 394 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Prieske, Olaf A1 - Mühlbauer, Thomas A1 - Krüger, Tom A1 - Kibele, Armin A1 - Behm, David George A1 - Granacher, Urs T1 - Role of the trunk during drop jumps on stable and unstable surfaces JF - European journal of applied physiology N2 - The present study investigated associations between trunk muscle strength, jump performance, and lower limb kinematics during drop jumps on stable and unstable surfaces. Next to this behavioral approach, correlations were also computed on a neuromuscular level between trunk and leg muscle activity during the same test conditions. Twenty-nine healthy and physically active subjects (age 23 +/- A 3 years) were enrolled in this study. Peak isokinetic torque (PIT) of the trunk flexors and extensors was assessed separately on an isokinetic device. In addition, tests included drop jumps (DJ) on a force plate under stable and unstable (i.e., balance pad on top of the force plate) surfaces. Lower limb kinematics as well as electromyographic activity of selected trunk and leg muscles were analyzed. Significant positive but small correlations (0.50 a parts per thousand currency sign r a parts per thousand currency sign 0.66, p < 0.05) were detected between trunk extensor PIT and athletic performance measures (i.e., DJ height, DJ performance index), irrespective of surface condition. Further, significant negative but small correlation coefficients were examined between trunk extensor PIT and knee valgus motion under stable and unstable surface conditions (-0.48 a parts per thousand currency sign r a parts per thousand currency sign -0.45, p < 0.05). In addition, significant positive but small correlations (0.45 a parts per thousand currency sign r a parts per thousand currency sign 0.68, p < 0.05) were found between trunk and leg muscle activity, irrespective of surface condition. Behavioral and neuromuscular data from this study indicate that, irrespective of the surface condition (i.e., jumping on stable or unstable ground), the trunk plays a minor role for leg muscle performance/activity during DJ. This implies only limited effects of trunk muscle strengthening on jump performance in the stretch-shortening cycle. KW - Core stability KW - Jump height KW - Knee valgus motion KW - Ground reaction force KW - Stretch-shortening cycle KW - Electromyography Y1 - 2015 U6 - https://doi.org/10.1007/s00421-014-3004-9 SN - 1439-6319 SN - 1439-6327 VL - 115 IS - 1 SP - 139 EP - 146 PB - Springer CY - New York ER - TY - GEN A1 - Beurskens, Rainer A1 - Mühlbauer, Thomas A1 - Granacher, Urs T1 - Association of dual-task walking performance and leg muscle quality in healthy children N2 - Background Previous literature mainly introduced cognitive functions to explain performance decrements in dual-task walking, i.e., changes in dual-task locomotion are attributed to limited cognitive information processing capacities. In this study, we enlarge existing literature and investigate whether leg muscular capacity plays an additional role in children’s dual-task walking performance. Methods To this end, we had prepubescent children (mean age: 8.7 ± 0.5 years, age range: 7–9 years) walk in single task (ST) and while concurrently conducting an arithmetic subtraction task (DT). Additionally, leg lean tissue mass was assessed. Results Findings show that both, boys and girls, significantly decrease their gait velocity (f = 0.73), stride length (f = 0.62) and cadence (f = 0.68) and increase the variability thereof (f = 0.20-0.63) during DT compared to ST. Furthermore, stepwise regressions indicate that leg lean tissue mass is closely associated with step time and the variability thereof during DT (R2 = 0.44, p = 0.009). These associations between gait measures and leg lean tissue mass could not be observed for ST (R2 = 0.17, p = 0.19). Conclusion We were able to show a potential link between leg muscular capacities and DT walking performance in children. We interpret these findings as evidence that higher leg muscle mass in children may mitigate the impact of a cognitive interference task on DT walking performance by inducing enhanced gait stability. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - paper 270 KW - Gait KW - Cognitive interference KW - Body composition KW - Muscle mass KW - Children Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-75100 ER - TY - JOUR A1 - Beurskens, Rainer A1 - Mühlbauer, Thomas A1 - Granacher, Urs T1 - Association of dual-task walking performance and leg muscle quality in healthy children JF - BMC pediatrics N2 - Background Previous literature mainly introduced cognitive functions to explain performance decrements in dual-task walking, i.e., changes in dual-task locomotion are attributed to limited cognitive information processing capacities. In this study, we enlarge existing literature and investigate whether leg muscular capacity plays an additional role in children’s dual-task walking performance. Methods To this end, we had prepubescent children (mean age: 8.7 ± 0.5 years, age range: 7–9 years) walk in single task (ST) and while concurrently conducting an arithmetic subtraction task (DT). Additionally, leg lean tissue mass was assessed. Results Findings show that both, boys and girls, significantly decrease their gait velocity (f = 0.73), stride length (f = 0.62) and cadence (f = 0.68) and increase the variability thereof (f = 0.20-0.63) during DT compared to ST. Furthermore, stepwise regressions indicate that leg lean tissue mass is closely associated with step time and the variability thereof during DT (R2 = 0.44, p = 0.009). These associations between gait measures and leg lean tissue mass could not be observed for ST (R2 = 0.17, p = 0.19). Conclusion We were able to show a potential link between leg muscular capacities and DT walking performance in children. We interpret these findings as evidence that higher leg muscle mass in children may mitigate the impact of a cognitive interference task on DT walking performance by inducing enhanced gait stability. KW - Gait KW - Cognitive interference KW - Body composition KW - Muscle mass KW - Children Y1 - 2015 U6 - https://doi.org/10.1186/s12887-015-0317-8 SN - 1471-2431 VL - 15 IS - 2 PB - BioMed Central CY - London ER - TY - GEN A1 - Golle, Kathleen A1 - Mühlbauer, Thomas A1 - Wick, Ditmar A1 - Granacher, Urs T1 - Physical Fitness Percentiles of German Children Aged 9–12 Years BT - findings from a Longitudinal Study N2 - Background Generating percentile values is helpful for the identification of children with specific fitness characteristics (i.e., low or high fitness level) to set appropriate fitness goals (i.e., fitness/health promotion and/or long-term youth athlete development). Thus, the aim of this longitudinal study was to assess physical fitness development in healthy children aged 9–12 years and to compute sex- and age-specific percentile values. Methods Two-hundred and forty children (88 girls, 152 boys) participated in this study and were tested for their physical fitness. Physical fitness was assessed using the 50-m sprint test (i.e., speed), the 1-kg ball push test, the triple hop test (i.e., upper- and lower- extremity muscular power), the stand-and-reach test (i.e., flexibility), the star run test (i.e., agility), and the 9-min run test (i.e., endurance). Age- and sex-specific percentile values (i.e., P10 to P90) were generated using the Lambda, Mu, and Sigma method. Adjusted (for change in body weight, height, and baseline performance) age- and sex-differences as well as the interactions thereof were expressed by calculating effect sizes (Cohen’s d). Results Significant main effects of Age were detected for all physical fitness tests (d = 0.40–1.34), whereas significant main effects of Sex were found for upper-extremity muscular power (d = 0.55), flexibility (d = 0.81), agility (d = 0.44), and endurance (d = 0.32) only. Further, significant Sex by Age interactions were observed for upper-extremity muscular power (d = 0.36), flexibility (d = 0.61), and agility (d = 0.27) in favor of girls. Both, linear and curvilinear shaped curves were found for percentile values across the fitness tests. Accelerated (curvilinear) improvements were observed for upper-extremity muscular power (boys: 10–11 yrs; girls: 9–11 yrs), agility (boys: 9–10 yrs; girls: 9–11 yrs), and endurance (boys: 9–10 yrs; girls: 9–10 yrs). Tabulated percentiles for the 9-min run test indicated that running distances between 1,407–1,507 m, 1,479–1,597 m, 1,423–1,654 m, and 1,433–1,666 m in 9- to 12-year-old boys and 1,262–1,362 m, 1,329–1,434 m, 1,392–1,501 m, and 1,415–1,526 m in 9- to 12-year-old girls correspond to a “medium” fitness level (i.e., P40 to P60) in this population. Conclusions The observed differences in physical fitness development between boys and girls illustrate that age- and sex-specific maturational processes might have an impact on the fitness status of healthy children. Our statistical analyses revealed linear (e.g., lower-extremity muscular power) and curvilinear (e.g., agility) models of fitness improvement with age which is indicative of timed and capacity-specific fitness development pattern during childhood. Lastly, the provided age- and sex-specific percentile values can be used by coaches for talent identification and by teachers for rating/grading of children’s motor performance. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 282 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-86613 ER - TY - GEN A1 - Beurskens, Rainer A1 - Mühlbauer, Thomas A1 - Granacher, Urs A1 - Gollhofer, Albert A1 - Cardinale, Marco T1 - Effects of heavy-resistance strength and balance training on unilateral and bilateral leg strength performance in old adults N2 - The term “bilateral deficit” (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20–30 years) and old adults (age: >65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 × / week) at 80% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre- and post-tests included uni- and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni- and bilateral MIF (all p < .001; d = 2.61–3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni- and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - paper 268 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-73448 ER - TY - JOUR A1 - Golle, Kathleen A1 - Mühlbauer, Thomas A1 - Wick, Ditmar A1 - Granacher, Urs T1 - Physical Fitness Percentiles of German Children Aged 9–12 Years BT - findings from a Longitudinal Study JF - PLoS ONE N2 - Background Generating percentile values is helpful for the identification of children with specific fitness characteristics (i.e., low or high fitness level) to set appropriate fitness goals (i.e., fitness/health promotion and/or long-term youth athlete development). Thus, the aim of this longitudinal study was to assess physical fitness development in healthy children aged 9–12 years and to compute sex- and age-specific percentile values. Methods Two-hundred and forty children (88 girls, 152 boys) participated in this study and were tested for their physical fitness. Physical fitness was assessed using the 50-m sprint test (i.e., speed), the 1-kg ball push test, the triple hop test (i.e., upper- and lower- extremity muscular power), the stand-and-reach test (i.e., flexibility), the star run test (i.e., agility), and the 9-min run test (i.e., endurance). Age- and sex-specific percentile values (i.e., P10 to P90) were generated using the Lambda, Mu, and Sigma method. Adjusted (for change in body weight, height, and baseline performance) age- and sex-differences as well as the interactions thereof were expressed by calculating effect sizes (Cohen’s d). Results Significant main effects of Age were detected for all physical fitness tests (d = 0.40–1.34), whereas significant main effects of Sex were found for upper-extremity muscular power (d = 0.55), flexibility (d = 0.81), agility (d = 0.44), and endurance (d = 0.32) only. Further, significant Sex by Age interactions were observed for upper-extremity muscular power (d = 0.36), flexibility (d = 0.61), and agility (d = 0.27) in favor of girls. Both, linear and curvilinear shaped curves were found for percentile values across the fitness tests. Accelerated (curvilinear) improvements were observed for upper-extremity muscular power (boys: 10–11 yrs; girls: 9–11 yrs), agility (boys: 9–10 yrs; girls: 9–11 yrs), and endurance (boys: 9–10 yrs; girls: 9–10 yrs). Tabulated percentiles for the 9-min run test indicated that running distances between 1,407–1,507 m, 1,479–1,597 m, 1,423–1,654 m, and 1,433–1,666 m in 9- to 12-year-old boys and 1,262–1,362 m, 1,329–1,434 m, 1,392–1,501 m, and 1,415–1,526 m in 9- to 12-year-old girls correspond to a “medium” fitness level (i.e., P40 to P60) in this population. Conclusions The observed differences in physical fitness development between boys and girls illustrate that age- and sex-specific maturational processes might have an impact on the fitness status of healthy children. Our statistical analyses revealed linear (e.g., lower-extremity muscular power) and curvilinear (e.g., agility) models of fitness improvement with age which is indicative of timed and capacity-specific fitness development pattern during childhood. Lastly, the provided age- and sex-specific percentile values can be used by coaches for talent identification and by teachers for rating/grading of children’s motor performance. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0142393 SN - 1932-6203 VL - 10 IS - 11 PB - Public Library of Science CY - Lawrence, Kan. ER - TY - JOUR A1 - Beurskens, Rainer A1 - Mühlbauer, Thomas A1 - Granacher, Urs A1 - Gollhofer, Albert A1 - Cardinale, Marco T1 - Effects of heavy-resistance strength and balance training on unilateral and bilateral leg strength performance in old adults JF - PLoS one N2 - The term “bilateral deficit” (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20–30 years) and old adults (age: >65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 × / week) at 80% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre- and post-tests included uni- and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni- and bilateral MIF (all p < .001; d = 2.61–3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni- and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0118535 SN - 1932-6203 PB - Public Library of Science CY - Lawrence, Kan. ER - TY - GEN A1 - Granacher, Urs A1 - Hortobágyi, Tibor T1 - Exercise to improve mobility in healthy aging T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 897 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432419 SN - 1866-8372 IS - 897 ER - TY - GEN A1 - Kibele, Armin A1 - Granacher, Urs A1 - Mühlbauer, Thomas A1 - Behm, David George T1 - Stable, Unstable, and Metastable States of Equilibrium: Definitions and Applications to Human Movement T2 - Journal of sports science & medicine Y1 - 2015 SN - 1303-2968 VL - 14 IS - 4 SP - 885 EP - 887 PB - Department of Sports Medicine, Medical Faculty of Uludag University CY - Bursa ER - TY - JOUR A1 - Hortobágyi, Tibor A1 - Lesinski, Melanie A1 - Gäbler, Martijn A1 - VanSwearingen, Jessie M. A1 - Malatesta, Davide A1 - Granacher, Urs T1 - Effects of three types of exercise interventions on healthy old adults’ gait speed BT - a systematic review and meta-analysis JF - Sports medicine N2 - Background: Habitual walking speed predicts many clinical conditions later in life, but it declines with age. However, which particular exercise intervention can minimize the age-related gait speed loss is unclear. Purpose: Our objective was to determine the effects of strength, power, coordination, and multimodal exercise training on healthy old adults' habitual and fast gait speed. Methods: We performed a computerized systematic literature search in PubMed and Web of Knowledge from January 1984 up to December 2014. Search terms included 'Resistance training', 'power training', 'coordination training', 'multimodal training', and 'gait speed (outcome term). Inclusion criteria were articles available in full text, publication period over past 30 years, human species, journal articles, clinical trials, randomized controlled trials, English as publication language, and subject age C65 years. The methodological quality of all eligible intervention studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. We computed weighted average standardized mean differences of the intervention-induced adaptations in gait speed using a random-effects model and tested for overall and individual intervention effects relative to no-exercise controls. Results: A total of 42 studies (mean PEDro score of 5.0 +/- 1.2) were included in the analyses (2495 healthy old adults; age 74.2 years [64.4-82.7]; body mass 69.9 +/- 4.9 kg, height 1.64 +/- 0.05 m, body mass index 26.4 +/- 1.9 kg/m(2), and gait speed 1.22 +/- 0.18 m/s). The search identified only one power training study, therefore the subsequent analyses focused only on the effects of resistance, coordination, and multimodal training on gait speed. The three types of intervention improved gait speed in the three experimental groups combined (n = 1297) by 0.10 m/s (+/- 0.12) or 8.4 % (+/- 9.7), with a large effect size (ES) of 0.84. Resistance (24 studies; n = 613; 0.11 m/s; 9.3 %; ES: 0.84), coordination (eight studies, n = 198; 0.09 m/s; 7.6 %; ES: 0.76), and multimodal training (19 studies; n = 486; 0.09 m/s; 8.4 %, ES: 0.86) increased gait speed statistically and similarly. Conclusions: Commonly used exercise interventions can functionally and clinically increase habitual and fast gait speed and help slow the loss of gait speed or delay its onset. KW - resistance training KW - exercise intervention KW - gait speed KW - power training KW - mobility disability Y1 - 2015 U6 - https://doi.org/10.1007/s40279-015-0371-2 SN - 1179-2035 SN - 0112-1642 N1 - Erratum in: Sports Med. 2016 Mar;46(3):453. doi: 10.1007/s40279-016-0498-9. VL - 45 SP - 1627 EP - 1643 PB - Springer CY - Berlin ER - TY - JOUR A1 - Lesinski, Melanie A1 - Hortobagyi, Tibor A1 - Mühlbauer, Thomas A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Dose-Response Relationships of Balance Training in Healthy Young Adults: A Systematic Review and Meta-Analysis JF - Sports medicine N2 - Background Balance training (BT) has been used for the promotion of balance and sports-related skills as well as for prevention and rehabilitation of lower extremity sport injuries. However, evidence-based dose-response relationships in BT parameters have not yet been established. Objective The objective of this systematic literature review and meta-analysis was to determine dose-response relationships in BT parameters that lead to improvements in balance in young healthy adults with different training status. Data Sources A computerized systematic literature search was performed in the electronic databases PubMed, Web of Knowledge, and SPORTDiscus from January 1984 up to May 2014 to capture all articles related to BT in young healthy adults. Study Eligibility Criteria A systematic approach was used to evaluate the 596 articles identified for initial review. Only randomized controlled studies were included if they investigated BT in young healthy adults (16-40 years) and tested at least one behavioral balance performance outcome. In total, 25 studies met the inclusion criteria for review. Study Appraisal and Synthesis Methods Studies were evaluated using the physiotherapy evidence database (PEDro) scale. Within-subject effect sizes (ESdw) and between-subject effect sizes (ESdb) were calculated. The included studies were coded for the following criteria: training status (elite athletes, sub-elite athletes, recreational athletes, untrained subjects), training modalities (training period, frequency, volume, etc.), and balance outcome (test for the assessment of steady-state, proactive, and reactive balance). Results Mean ESdb demonstrated that BT is an effective means to improve steady-state (ESdb = 0.73) and proactive balance (ESdb = 0.92) in healthy young adults. Studies including elite athletes showed the largest effects (ESdb = 1.29) on measures of steady-state balance as compared with studies analyzing sub-elite athletes (ESdb = 0.32), recreational athletes (ESdb = 0.69), and untrained subjects (ESdb = 0.82). Our analyses regarding dose-response relationships in BT revealed that a training period of 11-12 weeks (ESdb = 1.09), a training frequency of three (mean ESdb = 0.72) or six (single ESdb = 1.84) sessions per week, at least 16-19 training sessions in total (ESdb = 1.12), a duration of 11-15 min for a single training session (ESdb = 1.11), four exercises per training session (ESdb = 1.29), two sets per exercise (ESdb = 1.63), and a duration of 21-40 s for a single BT exercise (ESdb = 1.06) is most effective in improving measures of steady-state balance. Due to a small number of studies, dose-response relationships of BT for measures of proactive and reactive balance could not be qualified. Limitations The present findings must be interpreted with caution because it is difficult to separate the impact of a single training modality (e.g., training frequency) from that of the others. Moreover, the quality of the included studies was rather limited, with a mean PEDro score of 5. Conclusions Our detailed analyses revealed effective BT parameters for the improvement of steady-state balance. Thus, practitioners and coaches are advised to consult the identified dose-response relationships of this systematic literature review and meta-analysis to implement effective BT protocols in clinical and sports-related contexts. However, further research of high methodological quality is needed to (1) determine dose-response relationships of BT for measures of proactive and reactive balance, (2) define effective sequencing protocols in BT (e.g., BT before or after a regular training session), (3) discern the effects of detraining, and (4) develop a feasible and effective method to regulate training intensity in BT. Y1 - 2015 U6 - https://doi.org/10.1007/s40279-014-0284-5 SN - 0112-1642 SN - 1179-2035 VL - 45 IS - 4 SP - 557 EP - 576 PB - Springer CY - Northcote ER - TY - GEN A1 - Granacher, Urs A1 - Schellbach, Jörg A1 - Klein, Katja A1 - Prieske, Olaf A1 - Baeyens, Jean-Pierre A1 - Mühlbauer, Thomas T1 - Effects of core strength training using stable versus unstable surfaces on physical fitness in adolescents BT - a randomized controlled trial N2 - Background It has been demonstrated that core strength training is an effective means to enhance trunk muscle strength (TMS) and proxies of physical fitness in youth. Of note, cross-sectional studies revealed that the inclusion of unstable elements in core strengthening exercises produced increases in trunk muscle activity and thus provide potential extra training stimuli for performance enhancement. Thus, utilizing unstable surfaces during core strength training may even produce larger performance gains. However, the effects of core strength training using unstable surfaces are unresolved in youth. This randomized controlled study specifically investigated the effects of core strength training performed on stable surfaces (CSTS) compared to unstable surfaces (CSTU) on physical fitness in school-aged children. Methods Twenty-seven (14 girls, 13 boys) healthy subjects (mean age: 14 ± 1 years, age range: 13–15 years) were randomly assigned to a CSTS (n = 13) or a CSTU (n = 14) group. Both training programs lasted 6 weeks (2 sessions/week) and included frontal, dorsal, and lateral core exercises. During CSTU, these exercises were conducted on unstable surfaces (e.g., TOGU© DYNAIR CUSSIONS, THERA-BAND© STABILITY TRAINER). Results Significant main effects of Time (pre vs. post) were observed for the TMS tests (8-22%, f = 0.47-0.76), the jumping sideways test (4-5%, f = 1.07), and the Y balance test (2-3%, f = 0.46-0.49). Trends towards significance were found for the standing long jump test (1-3%, f = 0.39) and the stand-and-reach test (0-2%, f = 0.39). We could not detect any significant main effects of Group. Significant Time x Group interactions were detected for the stand-and-reach test in favour of the CSTU group (2%, f = 0.54). Conclusions Core strength training resulted in significant increases in proxies of physical fitness in adolescents. However, CSTU as compared to CSTS had only limited additional effects (i.e., stand-and-reach test). Consequently, if the goal of training is to enhance physical fitness, then CSTU has limited advantages over CSTS. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 297 KW - Resistance training KW - Trunk muscle strength KW - Physical fitness Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-93490 ER - TY - JOUR A1 - Lesinski, Melanie A1 - Prieske, Olaf A1 - Granacher, Urs T1 - Effects and dose-response relationships of resistance training on physical performance in youth athletes: a systematic review and meta-analysis JF - British journal of sports medicine : the journal of sport and exercise medicine N2 - Objectives To quantify age, sex, sport and training type-specific effects of resistance training on physical performance, and to characterise dose-response relationships of resistance training parameters that could maximise gains in physical performance in youth athletes. Design Systematic review and meta-analysis of intervention studies. Data sources Studies were identified by systematic literature search in the databases PubMed and Web of Science (1985-2015). Weighted mean standardised mean differences (SMDwm) were calculated using random-effects models. Eligibility criteria for selecting studies Only studies with an active control group were included if these investigated the effects of resistance training in youth athletes (6-18 years) and tested at least one physical performance measure. Results 43 studies met the inclusion criteria. Our analyses revealed moderate effects of resistance training on muscle strength and vertical jump performance (SMDwm 0.8-1.09), and small effects on linear sprint, agility and sport-specific performance (SMDwm 0.58-0.75). Effects were moderated by sex and resistance training type. Independently computed dose-response relationships for resistance training parameters revealed that a training period of >23 weeks, 5 sets/exercise, 6-8 repetitions/set, a training intensity of 80-89% of 1 repetition maximum (RM), and 3-4 min rest between sets were most effective to improve muscle strength (SMDwm 2.09-3.40). Summary/conclusions Resistance training is an effective method to enhance muscle strength and jump performance in youth athletes, moderated by sex and resistance training type. Dose-response relationships for key training parameters indicate that youth coaches should primarily implement resistance training programmes with fewer repetitions and higher intensities to improve physical performance measures of youth athletes. Y1 - 2016 U6 - https://doi.org/10.1136/bjsports-2015-095497 SN - 0306-3674 SN - 1473-0480 VL - 50 SP - 781 EP - 795 PB - BMJ Publishing Group CY - London ER - TY - JOUR A1 - Lacroix, Andre A1 - Kressig, Reto W. A1 - Mühlbauer, Thomas A1 - Gschwind, Yves J. A1 - Pfenninger, Barbara A1 - Bruegger, Othmar A1 - Granacher, Urs T1 - Effects of a Supervised versus an Uniupervised Combined Balance and Strength Training Program on Balance and Muscle Power in Healthy Older Adults: A Randomized Controlled Trial JF - Gerontology N2 - Background: Losses in lower extremity muscle strength/power, muscle mass and deficits in static and particularly dynamic balance due to aging are associated with impaired functional performance and an increased fall risk. It has been shown that the combination of balance and strength training (BST) mitigates these age-related deficits. However, it is unresolved whether supervised versus unsupervised BST is equally effective in improving muscle power and balance in older adults. Objective:This study examined the impact of a 12-week BST program followed by 12 weeks of detraining on measures of balance and muscle power in healthy older adults enrolled in supervised (SUP) or unsupervised (UNSUP) training. Methods: Sixty-six older adults (men: 25, women: 41; age 73 4 years) were randomly assigned to a SUP group (2/week supervised training, 1/week unsupervised training; n = 22), an UNSUP group (3/week unsupervised training; n = 22) or a passive control group (CON; n = 22). Static (i.e., Romberg Test) and dynamic (i.e., 10-meter walk test) steady-state, proactive (i.e., Timed Up and Go Test, Functional Reach Test), and reactive balance (e.g., Push and Release Test), as well as lower extremity muscle power (i.e., Chair Stand Test; Stair Ascent and Descent Test) were tested before and after the active training phase as well as after detraining. Results: Adherence rates to training were 92% for SUP and 97% for UNSUP. BST resulted in significant group x time interactions. Post hoc analyses showed, among others, significant training-related improvements for the Romberg Test, stride velocity, Timed Up and Go Test, and Chair Stand Test in favor of the SUP group. Following detraining, significantly enhanced performances (compared to baseline) were still present in 13 variables for the SUP group and in 10 variables for the UNSUP group. Conclusion: Twelve weeks of BST proved to be safe (no training-related injuries) and feasible (high attendance rates of >90%). Deficits of balance and lower extremity muscle power can be mitigated by BST in healthy older adults. Additionally, supervised as compared to unsupervised BST was more effective. Thus, it is recommended to counteract intrinsic fall risk factors by applying supervised BST programs for older adults. (C) 2015 The Author(s) Published by S. Karger AG, Basel KW - Sensorimotor training KW - Resistance training KW - Gym-based/home-based training KW - Detraining KW - Seniors Y1 - 2016 U6 - https://doi.org/10.1159/000442087 SN - 0304-324X SN - 1423-0003 VL - 62 SP - 275 EP - 288 PB - Karger CY - Basel ER - TY - JOUR A1 - Prieske, Olaf A1 - Mühlbauer, Thomas A1 - Borde, Ron A1 - Gube, M. A1 - Bruhn, S. A1 - Behm, David George A1 - Granacher, Urs T1 - Neuromuscular and athletic performance following core strength training in elite youth soccer: Role of instability JF - Learning and individual differences N2 - Cross-sectional studies revealed that inclusion of unstable elements in core-strengthening exercises produced increases in trunk muscle activity and thus potential extra stimuli to induce more pronounced performance enhancements in youth athletes. Thus, the purpose of the study was to investigate changes in neuromuscular and athletic performance following core strength training performed on unstable (CSTU) compared with stable surfaces (CSTS) in youth soccer players. Thirty-nine male elite soccer players (age: 17 +/- 1 years) were assigned to two groups performing a progressive core strength-training program for 9 weeks (2-3 times/week) in addition to regular in-season soccer training. CSTS group conducted core exercises on stable (i.e., floor, bench) and CSTU group on unstable (e.g., Thera-Band (R) Stability Trainer, Togu (c) Swiss ball) surfaces. Measurements included tests for assessing trunk muscle strength/activation, countermovement jump height, sprint time, agility time, and kicking performance. Statistical analysis revealed significant main effects of test (pre vs post) for trunk extensor strength (5%, P<0.05, d=0.86), 10-20-m sprint time (3%, P<0.05, d=2.56), and kicking performance (1%, P<0.01, d=1.28). No significant Groupxtest interactions were observed for any variable. In conclusion, trunk muscle strength, sprint, and kicking performance improved following CSTU and CSTS when conducted in combination with regular soccer training. KW - Elite sports KW - jumping KW - agility KW - sprint KW - ball speed KW - electromyography Y1 - 2016 U6 - https://doi.org/10.1111/sms.12403 SN - 0905-7188 SN - 1600-0838 VL - 26 SP - 48 EP - 56 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Wallenta, Christopher A1 - Granacher, Urs A1 - Lesinski, Melanie A1 - Schuenemann, C. A1 - Mühlbauer, Thomas T1 - Effects of Complex Versus Block Strength Training on the Athletic Performance of Elite Youth Soccer Players JF - Sportverletzung, Sportschaden : Grundlagen, Prävention, Rehabilitation N2 - Hintergrund: Kraft und Schnelligkeit stellen bedeutsame leistungsdeterminierende Faktoren im Fußball dar. Durch Komplextraining (Kombination aus Kraft- und plyometrischen Übungen in einer Trainingseinheit) lassen sich Kraft- und Schnelligkeitswerte von Athleten steigern. Unklar ist jedoch, ob ein Komplextraining (KT) gegenüber einem herkömmlichen blockweisen Krafttraining (BT) zu größeren sportmotorischen Leistungssteigerungen führt. Das Ziel der Studie war es, die Effekte von KT versus BT auf Variablen der Kraft, Schnelligkeit und Gewandtheit von Nachwuchsleistungsfußballern zu untersuchen. Methode: Zusätzlich zum regulären Fußballtraining (ca. 6 × pro Woche, je 60 – 90 min.) führten 18 männliche Nachwuchsleistungsfußballer über sechs Wochen (2 × pro Woche, je 30 min.) entweder ein progressives KT (n = 10, Alter: 18,5 ± 2,2 Jahre) oder BT (n = 8, Alter: 18,1 ± 1,6 Jahre) durch. Vor und nach dem Training wurden Tests zur Erfassung der Kraft (Einer-Wiederholungs-Maximum [EWM] Kniebeuge), der Sprungkraft (Hockstrecksprung [HSS]), der Schnelligkeit (30-m-Sprint) und der Gewandtheit (T-Test) durchgeführt. Es wurden parameterfreie Verfahren zur Bestimmung von Unterschieden innerhalb (Wilcoxon-Test) und zwischen (Mann-Whitney-U-Test) den beiden Gruppen gerechnet. Ergebnisse: Sowohl KT als auch BT sind sichere (keine trainings- aber sechs spielbedingte Verletzungen) und geeignete (Trainingsteilnahme in KT und BT: ≥ 80 %) Trainingsmaßnahmen in Ergänzung zum regulären Fußballtraining. Die statistische Analyse ergab signifikante Verbesserungen vom Prä- zum Posttest für die KT-Gruppe im EWM (p = 0,043) und im HSS (p = 0,046) sowie für die BT-Gruppe in der Sprintzeit über 5 m (p = 0,039) und 10 m (p = 0,026). Zudem zeigten sich für beide Gruppen signifikante Verbesserungen im T-Test (KT: p = 0,046; BT: p = 0,027). Der Gruppenvergleich (KT vs. BT) über die Zeit (Post- minus Prätest) offenbarte keine bedeutsamen Unterschiede. Schlussfolgerung: Sowohl sechswöchiges KT als auch BT führten zu signifikanten Verbesserungen sportmotorischer Leistungen bei Nachwuchsleistungsfußballern. Allerdings konnten keine zusätzlich leistungssteigernden Effekte von KT im Vergleich zu BT ermittelt werden. In zukünftigen Studien sollte geprüft werden, ob die beobachteten testspezifischen Veränderungen, d. h. Verbesserung der Kraft/Sprungkraft in der KT-Gruppe und Verbesserung der Schnelligkeit in der BT-Gruppe der gewählten Übungsanordnung geschuldet sind oder einen generellen Effekt darstellen. Background: Muscle strength and speed are important determinants of soccer performance. It has previously been shown that complex training (CT, combination of strength and plyometric exercises within a single training session) is effective to enhance strength and speed performance in athletes. However, it is unresolved whether CT is more effective than conventional strength training that is delivered in one single block (BT) to increase proxies of athletic performance. Thus, the aim of the present study was to investigate the effects of CT versus BT on measures of muscle strength/power, speed, and agility in elite youth soccer players. Methods: Eighteen male elite youth soccer players conducted six weeks (2 sessions/week, 30 min, each) of progressive CT (n = 10, age: 18,5 +/- 2.2 years) or BT (n=8, age: 18.1 +/- 1.6 years) in addition to their regular soccer training (approx. 6 sessions/week, 60-90 min, each). Before and after training, tests were conducted for the assessment of strength (one -repetition maximum [1RM] squat), power (countermovement jump [CMJ]), speed (30-m linear sprint), and agility (T test). Non-parametric analyses were used to calculate differences within (Wilcoxon test) and between (Mann-Whitney-U test) groups. Results: Both CT and BT proved to be safe (i.e. no training-related, but six match -related injuries reported) and feasible (i.e. attendance rate of 80% in both groups) training regimens when implemented in addition to regular soccer training. The statistical analysis revealed significant improvements from pre-training to post-training tests for the CT group in 1 RM squat (p =0.043) and CMJ height (p =0,046). For the BT -group, significantly enhanced sprint times were observed over 5 m (p = 0.039) and 10 m (p = 0.026), Furthermore, both groups significantly improved their t test time (CT: p =0.046; BT: p =0.027). However, group comparisons (CT vs. BT) over time (post-training minus pre-training test) did not show any significant differences. Conclusion: Six weeks of CT and BT resulted in significant improvements in proxies of athletic performance. Yet CT did not produce any additional effects compared to BT. Future research is needed to examine whether the observed test-specific changes, i.e. improvements in strength/power for the CT-group and improvements in speed for the BT-group, are due to the applied configuration of strength, plyometric, and sprint exercises or if they rather indicate a general training response. KW - strength training KW - jump/sprint exercises KW - youth athletes Y1 - 2016 U6 - https://doi.org/10.1055/s-0041-106949 SN - 0932-0555 SN - 1439-1236 VL - 30 SP - 31 EP - 37 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Prieske, Olaf A1 - Mühlbauer, Thomas A1 - Granacher, Urs T1 - The Role of Trunk Muscle Strength for Physical Fitness and Athletic Performance in Trained Individuals: A Systematic Review and Meta-Analysis JF - Sports medicine N2 - Background The importance of trunk muscle strength (TMS) for physical fitness and athletic performance has been demonstrated by studies reporting significant correlations between those capacities. However, evidence-based knowledge regarding the magnitude of correlations between TMS and proxies of physical fitness and athletic performance as well as potential effects of core strength training (CST) on TMS, physical fitness and athletic performance variables is currently lacking for trained individuals. Objective The aims of this systematic review and meta-analysis were to quantify associations between variables of TMS, physical fitness and athletic performance and effects of CST on these measures in healthy trained individuals. Data Sources PubMed, Web of Science, and SPORTDiscus were systematically screened from January 1984 to March 2015. Study Eligibility Criteria Studies were included that investigated healthy trained individuals aged 16-44 years and tested at least one measure of TMS, muscle strength, muscle power, balance, and/or athletic performance. Results Small-sized relationships of TMS with physical performance measures (-0.05 <= r <= 0.18) were found in 15 correlation studies. Sixteen intervention studies revealed large effects of CST on measures of TMS (SMD = 1.07) but small-to-medium-sized effects on proxies of physical performance (0 <= SMD <= 0.71) compared with no training or regular training only. The methodological quality of CST studies was low (median PEDro score = 4). Conclusions Our findings indicate that TMS plays only a minor role for physical fitness and athletic performance in trained individuals. In fact, CST appears to be an effective means to increase TMS and was associated with only limited gains in physical fitness and athletic performance measures when compared with no or only regular training. Y1 - 2016 U6 - https://doi.org/10.1007/s40279-015-0426-4 SN - 0112-1642 SN - 1179-2035 VL - 46 SP - 401 EP - 419 PB - Springer CY - Northcote ER - TY - GEN A1 - Behm, David George A1 - Mühlbauer, Thomas A1 - Kibele, Armin A1 - Granacher, Urs T1 - Effects of Strength Training Using Unstable Surfaces on Strength, Power and Balance Performance Across the Lifespan: A Systematic Review and Meta-analysis (vol 45, pg 1645, 2015) T2 - Sports medicine Y1 - 2016 U6 - https://doi.org/10.1007/s40279-016-0497-x SN - 0112-1642 SN - 1179-2035 VL - 46 SP - 451 EP - 451 PB - Springer CY - Northcote ER - TY - JOUR A1 - Beurskens, Rainer A1 - Steinberg, Fabian A1 - Antoniewicz, Franziska A1 - Wolff, Wanja A1 - Granacher, Urs T1 - Neural Correlates of Dual-Task Walking: Effects of Cognitive versus Motor Interference in Young Adults JF - Neural plasticity N2 - Walking while concurrently performing cognitive and/or motor interference tasks is the norm rather than the exception during everyday life and there is evidence from behavioral studies that it negatively affects human locomotion. However, there is hardly any information available regarding the underlying neural correlates of single-and dual-task walking. We had 12 young adults (23.8 +/- 2.8 years) walk while concurrently performing a cognitive interference (CI) or a motor interference (MI) task. Simultaneously, neural activation in frontal, central, and parietal brain areas was registered using a mobile EEG system. Results showed that the MI task but not the CI task affected walking performance in terms of significantly decreased gait velocity and stride length and significantly increased stride time and tempo-spatial variability. Average activity in alpha and beta frequencies was significantly modulated during both CI and MI walking conditions in frontal and central brain regions, indicating an increased cognitive load during dual-task walking. Our results suggest that impaired motor performance during dual-task walking is mirrored in neural activation patterns of the brain. This finding is in line with established cognitive theories arguing that dual-task situations overstrain cognitive capabilities resulting in motor performance decrements. Y1 - 2016 U6 - https://doi.org/10.1155/2016/8032180 SN - 2090-5904 SN - 1687-5443 PB - Hindawi CY - London ER - TY - JOUR A1 - Beijersbergen, Chantal M. I. A1 - Hortobagyi, Tibor A1 - Beurskens, Rainer A1 - Lenzen-Grossimlinghaus, Romana A1 - Gabler, Martijn A1 - Granacher, Urs T1 - Effects of Power Training on Mobility and Gait Biomechanics in Old Adults with Moderate Mobility Disability: Protocol and Design of the Potsdam Gait Study (POGS) JF - Gerontology N2 - Background: Walking speed decreases in old age. Even though old adults regularly participate in exercise interventions, we do not know how the intervention-induced changes in physical abilities produce faster walking. The Potsdam Gait Study (POGS) will examine the effects of 10 weeks of power training and detraining on leg muscle power and, for the first time, on complete gait biomechanics, including joint kinematics, kinetics, and muscle activation in old adults with moderate mobility disability. Methods/Design: POGS is a randomized controlled trial with two arms, each crossed over, without blinding. Arm 1 starts with a 10-week control period to assess the reliability of the tests and is then crossed over to complete 25-30 training sessions over 10 weeks. Arm 2 completes 25-30 exercise sessions over 10 weeks, followed by a 10-week follow-up (detraining) period. The exercise program is designed to improve lower extremity muscle power. Main outcome measures are: muscle power, gait speed, and gait biomechanics measured at baseline and after 10 weeks of training and 10 weeks of detraining. Discussion: It is expected that power training will increase leg muscle power measured by the weight lifted and by dynamometry, and these increased abilities become expressed in joint powers measured during gait. Such favorably modified powers will underlie the increase in step length, leading ultimately to a faster walking speed. POGS will increase our basic understanding of the biomechanical mechanisms of how power training improves gait speed in old adults with moderate levels of mobility disabilities. (C) 2016 S. Karger AG, Basel KW - Aging KW - Walking speed KW - Exercise KW - Muscle power KW - Gait kinematics KW - Gait kinetics Y1 - 2016 U6 - https://doi.org/10.1159/000444752 SN - 0304-324X SN - 1423-0003 VL - 62 SP - 597 EP - 603 PB - Karger CY - Basel ER - TY - JOUR A1 - Negra, Yassine A1 - Chaabene, Helmi A1 - Hammami, Mehrez A1 - Hachana, Younes A1 - Granacher, Urs T1 - EFFECTS OF HIGH-VELOCITY RESISTANCE TRAINING ON ATHLETIC PERFORMANCE IN PREPUBERAL MALE SOCCER ATHLETES JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - The aim of this study was to assess the effectiveness of a 12-week in-season low-to-moderate load high-velocity resistance training (HVRT) in addition to soccer training as compared with soccer training only on proxies of athletic performance in prepubertal soccer players. Twenty-four male soccer players performed 2 different protocols: (a) regular soccer training with 5 sessions per week (n = 11; age = 12.7 +/- 0.3 years) and (b) regular soccer training with 3 sessions per week and HVRT with 2 sessions per week (n = 13; age = 12.8 +/- 0.2 years). The outcome measures included tests for the assessment of muscle strength (e.g., 1 repetition maximum [1RM] half-squat tests), jump ability (e.g., countermovement jump, squat jump [SJ], standing long jump [SLJ], and multiple 5-bound tests [MB5s]), linear speed (e.g., 5-, 10-, 20-, and 30-m sprint tests), and change of direction (e.g., T-test and Illinois change of direction test). Results revealed significant group 3 test interactions for the SJ test (p <= 0.05, d = 0.59) and the SLJ test (p < 0.01, d = 0.83). Post hoc tests illustrated significant pre-post changes in the HVRT group (SJ: Delta 22%, p < 0.001, d = 1.26; SLJ: Delta 15%, p < 0.001, d = 1.30) but not in the control group. In addition, tendencies toward significant interaction effects were found for the 1RM half-squat (p = 0.08, d = 0.54) and the 10-m sprint test (p = 0.06, d = 0.57). Significant pre-post changes were found for both parameters in the HVRT group only (1RM: Delta 25%, p < 0.001, d = 1.23; 10-m sprint: Delta 7%, p < 0.0001, d = 1.47). In summary, in-season low-to-moderate load HVRT conducted in combination with regular soccer training is a safe and feasible intervention that has positive effects on maximal strength, vertical and horizontal jump and sprint performance as compared with soccer training only. KW - youth soccer KW - change of direction KW - jump performances KW - sprint Y1 - 2016 U6 - https://doi.org/10.1519/JSC.0000000000001433 SN - 1064-8011 SN - 1533-4287 VL - 30 SP - 3290 EP - 3297 PB - Wiley-Blackwell CY - Philadelphia ER - TY - JOUR A1 - Hammami, Raouf A1 - Granacher, Urs A1 - Makhlouf, Issam A1 - Behm, David George A1 - Chaouachi, Anis T1 - SEQUENCING EFFECTS OF BALANCE AND PLYOMETRIC TRAINING ON PHYSICAL PERFORMANCE IN YOUTH SOCCER ATHLETES JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Balance training may have a preconditioning effect on subsequent power training with youth. There are no studies examining whether the sequencing of balance and plyometric training has additional training benefits. The objective was to examine the effect of sequencing balance and plyometric training on the performance of 12- to 13-year-old athletes. Twenty-four young elite soccer players trained twice per week for 8 weeks either with an initial 4 weeks of balance training followed by 4 weeks of plyometric training (BPT) or 4 weeks of plyometric training proceeded by 4 weeks of balance training (PBT). Testing was conducted pre- and posttraining and included medicine ball throw; horizontal and vertical jumps; reactive strength; leg stiffness; agility; 10-, 20-, and 30-m sprints; Standing Stork balance test; and Y-Balance test. Results indicated that BPT provided significantly greater improvements with reactive strength index, absolute and relative leg stiffness, triple hop test, and a trend for the Y-Balance test (p = 0.054) compared with PBT. Although all other measures had similar changes for both groups, the average relative improvement for the BPT was 22.4% (d = 1.5) vs. 15.0% (d = 1.1) for the PBT. BPT effect sizes were greater with 8 of 13 measures. In conclusion, although either sequence of BPT or PBT improved jumping, hopping, sprint acceleration, and Standing Stork and Y-Balance, BPT initiated greater training improvements in reactive strength index, absolute and relative leg stiffness, triple hop test, and the Y-Balance test. BPT may provide either similar or superior performance enhancements compared with PBT. KW - children KW - adolescents KW - power KW - jumps KW - sprints Y1 - 2016 U6 - https://doi.org/10.1519/JSC.0000000000001425 SN - 1064-8011 SN - 1533-4287 VL - 30 SP - 3278 EP - 3289 PB - Elsevier CY - Philadelphia ER - TY - JOUR A1 - Lesinski, Melanie A1 - Prieske, Olaf A1 - Demps, Marie A1 - Granacher, Urs T1 - Effects of fatigue and surface instability on neuromuscular performance during jumping JF - Der Schmerz : Organ der Deutschen Gesellschaft zum Studium des Schmerzes, der Österreichischen Schmerzgesellschaft und der Deutschen Interdisziplinären Vereinigung für Schmerztherapie N2 - It has previously been shown that fatigue and unstable surfaces affect jump performance. However, the combination thereof is unresolved. Thus, the purpose of this study was to examine the effects of fatigue and surface instability on jump performance and leg muscle activity. Twenty elite volleyball players (18 +/- 2 years) performed repetitive vertical double-leg box jumps until failure. Before and after a fatigue protocol, jump performance (i.e., jump height) and electromyographic activity of selected lower limb muscles were recorded during drop jumps (DJs) and countermovement jumps (CMJs) on a force plate on stable and unstable surfaces (i.e., balance pad on top of force plate). Jump performance (3-7%; P < 0.05; 1.14 <= d <= 2.82), and muscle activity (2-27%; P < 0.05; 0.59 <= d <= 3.13) were lower following fatigue during DJs and CMJs, and on unstable compared with stable surfaces during DJs only (jump performance: 8%; P < 0.01; d = 1.90; muscle activity: 9-25%; P < 0.05; 1.08 <= d <= 2.54). No statistically significant interactions of fatigue by surface condition were observed. Our findings revealed that fatigue impairs neuromuscular performance during DJs and CMJs in elite volleyball players, whereas surface instability affects neuromuscular DJ performance only. Absent fatigue x surface interactions indicate that fatigue-induced changes in jump performance are similar on stable and unstable surfaces in jump-trained athletes. KW - Exhaustion KW - stretch-shortening cycle KW - jump height KW - EMG KW - athlete. Y1 - 2016 U6 - https://doi.org/10.1111/sms.12548 SN - 0905-7188 SN - 1600-0838 VL - 26 SP - 1140 EP - 1150 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Beurskens, Rainer A1 - Steinberg, Fabian A1 - Antoniewicz, Franziska A1 - Wolff, Wanja A1 - Granacher, Urs T1 - Neural Correlates of Dual-Task Walking BT - Effects of Cognitive versus Motor Interference in Young Adults JF - Neural plasticity N2 - Walking while concurrently performing cognitive and/or motor interference tasks is the norm rather than the exception during everyday life and there is evidence from behavioral studies that it negatively affects human locomotion. However, there is hardly any information available regarding the underlying neural correlates of single- and dual-task walking. We had 12 young adults (23.8 ± 2.8 years) walk while concurrently performing a cognitive interference (CI) or a motor interference (MI) task. Simultaneously, neural activation in frontal, central, and parietal brain areas was registered using a mobile EEG system. Results showed that the MI task but not the CI task affected walking performance in terms of significantly decreased gait velocity and stride length and significantly increased stride time and tempo-spatial variability. Average activity in alpha and beta frequencies was significantly modulated during both CI and MI walking conditions in frontal and central brain regions, indicating an increased cognitive load during dual-task walking. Our results suggest that impaired motor performance during dual-task walking is mirrored in neural activation patterns of the brain. This finding is in line with established cognitive theories arguing that dual-task situations overstrain cognitive capabilities resulting in motor performance decrements. Y1 - 2016 U6 - https://doi.org/10.1155/2016/8032180 VL - 2016 SP - 1 EP - 9 PB - Hindawi CY - New York ER - TY - GEN A1 - Beurskens, Rainer A1 - Steinberg, Fabian A1 - Antoniewicz, Franziska A1 - Wolff, Wanja A1 - Granacher, Urs T1 - Neural Correlates of Dual-Task Walking BT - Effects of Cognitive versus Motor Interference in Young Adults N2 - Walking while concurrently performing cognitive and/or motor interference tasks is the norm rather than the exception during everyday life and there is evidence from behavioral studies that it negatively affects human locomotion. However, there is hardly any information available regarding the underlying neural correlates of single- and dual-task walking. We had 12 young adults (23.8 ± 2.8 years) walk while concurrently performing a cognitive interference (CI) or a motor interference (MI) task. Simultaneously, neural activation in frontal, central, and parietal brain areas was registered using a mobile EEG system. Results showed that the MI task but not the CI task affected walking performance in terms of significantly decreased gait velocity and stride length and significantly increased stride time and tempo-spatial variability. Average activity in alpha and beta frequencies was significantly modulated during both CI and MI walking conditions in frontal and central brain regions, indicating an increased cognitive load during dual-task walking. Our results suggest that impaired motor performance during dual-task walking is mirrored in neural activation patterns of the brain. This finding is in line with established cognitive theories arguing that dual-task situations overstrain cognitive capabilities resulting in motor performance decrements. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 291 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90742 SP - 1 EP - 9 ER - TY - GEN A1 - Hortobagyi, Tibor A1 - Lesinski, Melanie A1 - Gabler, Martijn A1 - VanSwearingen, Jessie M. A1 - Malatesta, Davide A1 - Granacher, Urs T1 - Gait Speed: A Systematic Review and Meta-Analysis (vol 45, pg 1627, 2015) T2 - Sports medicine Y1 - 2016 U6 - https://doi.org/10.1007/s40279-016-0498-9 SN - 0112-1642 SN - 1179-2035 VL - 46 SP - 453 EP - 453 PB - Springer CY - Northcote ER - TY - GEN A1 - Lesinski, Melanie A1 - Hortobagyi, Tibor A1 - Mühlbauer, Thomas A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Effects of Balance Training on Balance Performance in Healthy Older Adults: A Systematic Review and Meta-analysis (vol 45, pg 1721, 2015) T2 - Sports medicine Y1 - 2016 U6 - https://doi.org/10.1007/s40279-016-0500-6 SN - 0112-1642 SN - 1179-2035 VL - 46 SP - 457 EP - 457 PB - Springer CY - Northcote ER - TY - JOUR A1 - Hammami, Raouf A1 - Chaouachi, Anis A1 - Makhlouf, Issam A1 - Granacher, Urs A1 - Behm, David George T1 - Associations Between Balance and Muscle Strength, Power Performance in Male Youth Athletes of Different Maturity Status JF - Pediatric exercise science N2 - Balance, strength and power relationships may contain important information at various maturational stages to determine training priorities. Purpose: The objective was to examine maturity-specific relationships of static/dynamic balance with strength and power measures in young male athletes. Method: Soccer players (N = 130) aged 10-16 were assessed with the Stork and Y balance (YBT) tests. Strength/power measures included back extensor muscle strength, standing long jump (SLJ), countermovement jump (CMJ), and 3-hop jump tests. Associations between balance with strength/power variables were calculated according to peak-height-velocity (PHV). Results: There were significant medium-large sized correlations between all balance measures with back extensor strength (r =.486.791) and large associations with power (r =.511.827). These correlation coefficients were significantly different between pre-PHV and circa PHV as well as pre-PHV and post-PHV with larger associations in the more mature groups. Irrespective of maturity-status, SLJ was the best strength/ power predictor with the highest proportion of variance (12-47%) for balance (i.e., Stork eyes opened) and the YBT was the best balance predictor with the highest proportion of variance (43-78%) for all strength/ power variables. Conclusion: The associations between balance and muscle strength/power measures in youth athletes that increase with maturity may imply transfer effects from balance to strength/power training and vice versa in youth athletes. KW - children KW - adolescents KW - training KW - peak height velocity KW - relationships Y1 - 2016 U6 - https://doi.org/10.1123/pes.2015-0231 SN - 0899-8493 SN - 1543-2920 VL - 28 SP - 521 EP - 534 PB - Human Kinetics Publ. CY - Champaign ER - TY - JOUR A1 - Kuemmel, Jakob A1 - Bergmann, Julian A1 - Prieske, Olaf A1 - Kramer, Andreas A1 - Granacher, Urs A1 - Gruber, Markus T1 - Effects of conditioning hops on drop jump and sprint performance: a randomized crossover pilot study in elite athletes JF - BMC sports science, medicine & rehabilitation N2 - Background: It has previously been shown that conditioning activities consisting of repetitive hops have the potential to induce better drop jump (DJ) performance in recreationally active individuals. In the present pilot study, we investigated whether repetitive conditioning hops can also increase reactive jump and sprint performance in sprint-trained elite athletes competing at an international level. Methods: Jump and sprint performances of 5 athletes were randomly assessed under 2 conditions. The control condition (CON) comprised 8 DJs and 4 trials of 30-m sprints. The intervention condition (HOP) consisted of 10 maximal repetitive two-legged hops that were conducted 10 s prior to each single DJ and sprint trial. DJ performance was analyzed using a one-dimensional ground reaction force plate. Step length (SL), contact time (CT), and sprint time (ST) during the 30-m sprints were recorded using an opto-electronic measurement system. Results: Following the conditioning activity, DJ height and external DJ peak power were both significantly increased by 11 % compared to the control condition. All other variables did not show any significant differences between HOP and CON. Conclusions: In the present pilot study, we were able to demonstrate large improvements in DJ performance even in sprint-trained elite athletes following a conditioning activity consisting of maximal two-legged repetitive hops. This strengthens the hypothesis that plyometric conditioning exercises can induce performance enhancements in elite athletes that are even greater than those observed in recreationally active athletes.. In addition, it appears that the transfer of these effects to other stretch-shortening cycle activities is limited, as we did not observe any changes in sprint performance following the plyometric conditioning activity. KW - Post-activation potentiation KW - Performance gains KW - Reactive movement KW - Plyometric exercise Y1 - 2016 U6 - https://doi.org/10.1186/s13102-016-0027-z SN - 2052-1847 VL - 8 PB - BioMed Central CY - London ER - TY - GEN A1 - Lacroix, André A1 - Mühlbauer, Thomas A1 - Gschwind, Y. J. A1 - Pfenninger, B. A1 - Kressig, R. W. A1 - Brügger, O. A1 - Granacher, Urs T1 - Effects of instructed counterpart independent Strength and Balance Training on Strength and Balance Performance of healthy elderly People: A randomized, controlled Study T2 - Zeitschrift für Gerontologie und Geriatrie Y1 - 2016 SN - 0948-6704 SN - 1435-1269 VL - 49 SP - S12 EP - S13 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Beurskens, Rainer A1 - Mühlbauer, Thomas A1 - Cardinale, M. A1 - Granacher, Urs T1 - Effects of Strength and Balance Training on the Leg Power Performance of old People T2 - Zeitschrift für Gerontologie und Geriatrie Y1 - 2016 SN - 0948-6704 SN - 1435-1269 VL - 49 SP - S113 EP - S113 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Lesinski, Melanie A1 - Hortobagyi, Tibor A1 - Mühlbauer, Thomas A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Dose-Response Relationships of Balance Training in Healthy Young Adults: A Systematic Review and Meta-Analysis (vol 45, pg 557, 2015) T2 - Sports medicine Y1 - 2016 U6 - https://doi.org/10.1007/s40279-016-0499-8 SN - 0112-1642 SN - 1179-2035 VL - 46 SP - 455 EP - 455 PB - Springer CY - Northcote ER - TY - GEN A1 - Beurskens, Rainer A1 - Haeger, Matthias A1 - Kliegl, Reinhold A1 - Roecker, Kai A1 - Granacher, Urs T1 - Postural Control in Dual-Task Situations BT - Does Whole-Body Fatigue Matter? N2 - Postural control is important to cope with demands of everyday life. It has been shown that both attentional demand (i.e., cognitive processing) and fatigue affect postural control in young adults. However, their combined effect is still unresolved. Therefore, we investigated the effects of fatigue on single- (ST) and dual-task (DT) postural control. Twenty young subjects (age: 23.7 ± 2.7) performed an all-out incremental treadmill protocol. After each completed stage, one-legged-stance performance on a force platform under ST (i.e., one-legged-stance only) and DT conditions (i.e., one-legged-stance while subtracting serial 3s) was registered. On a second test day, subjects conducted the same balance tasks for the control condition (i.e., non-fatigued). Results showed that heart rate, lactate, and ventilation increased following fatigue (all p < 0.001; d = 4.2–21). Postural sway and sway velocity increased during DT compared to ST (all p < 0.001; d = 1.9–2.0) and fatigued compared to non-fatigued condition (all p < 0.001; d = 3.3–4.2). In addition, postural control deteriorated with each completed stage during the treadmill protocol (all p < 0.01; d = 1.9–3.3). The addition of an attention-demanding interference task did not further impede one-legged-stance performance. Although both additional attentional demand and physical fatigue affected postural control in healthy young adults, there was no evidence for an overadditive effect (i.e., fatigue-related performance decrements in postural control were similar under ST and DT conditions). Thus, attentional resources were sufficient to cope with the DT situations in the fatigue condition of this experiment. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 303 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-96638 SP - 1 EP - 15 ER - TY - GEN A1 - Granacher, Urs A1 - Lesinski, Melanie A1 - Büsch, Dirk A1 - Mühlbauer, Thomas A1 - Prieske, Olaf A1 - Puta, Christian A1 - Gollhofer, Albert A1 - Behm, David George T1 - Effects of resistance training in youth athletes on muscular fitness and athletic performance BT - a conceptual model for long-term athlete development T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - During the stages of long-term athlete development (LTAD), resistance training (RT) is an important means for (i) stimulating athletic development, (ii) tolerating the demands of long-term training and competition, and (iii) inducing long-term health promoting effects that are robust over time and track into adulthood. However, there is a gap in the literature with regards to optimal RT methods during LTAD and how RT is linked to biological age. Thus, the aims of this scoping review were (i) to describe and discuss the effects of RT on muscular fitness and athletic performance in youth athletes, (ii) to introduce a conceptual model on how to appropriately implement different types of RT within LTAD stages, and (iii) to identify research gaps from the existing literature by deducing implications for future research. In general, RT produced small -to -moderate effects on muscular fitness and athletic performance in youth athletes with muscular strength showing the largest improvement. Free weight, complex, and plyometric training appear to be well -suited to improve muscular fitness and athletic performance. In addition, balance training appears to be an important preparatory (facilitating) training program during all stages of LTAD but particularly during the early stages. As youth athletes become more mature, specificity, and intensity of RT methods increase. This scoping review identified research gaps that are summarized in the following and that should be addressed in future studies: (i) to elucidate the influence of gender and biological age on the adaptive potential following RT in youth athletes (especially in females), (ii) to describe RT protocols in more detail (i.e., always report stress and strain based parameters), and (iii) to examine neuromuscular and tendomuscular adaptations following RT in youth athletes. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 429 KW - weight lifting KW - children KW - adolescents KW - physical fitness KW - muscle strength KW - muscle power KW - muscular endurance Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406574 IS - 429 ER -