TY - JOUR A1 - Mühlbauer, Thomas A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Association of balance, strength, and power measures in young adults JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Muehlbauer, T, Gollhofer, A, and Granacher, U. Association of balance, strength, and power measures in young adults. J Strength Cond Res 27(3): 582-589, 2013-The purpose of this study was to investigate the relationship between variables of static/dynamic balance, isometric strength, and power. Twenty-seven young healthy adults (mean age: 23 6 4 years) performed measurements of static (unperturbed)/dynamic (perturbed) balance, isometric strength (i.e., maximal isometric torque [MIT]; rate of torque development [RTD] of the plantar flexor), and power (i.e., countermovement jump [CMJ] height and power). No significant associations were found between variables of static and dynamic balance (r = -0.090 to + 0.329, p > 0.05) and between measures of static/dynamic balance and isometric strength (r = +0.041 to +0.387, p > 0.05) and static/dynamic balance and power (r = -0.076 to + 0.218, p > 0.05). Significant positive correlations (r) were detected between variables of power and isometric strength ranging from +0.458 to +0.689 (p, 0.05). Furthermore, simple regression analyses revealed that a 10% increase in mean CMJ height (4.1 cm) was associated with 22.9 N.m and 128.4 N.m.s(-1) better MIT and RTD, respectively. The nonsignificant correlation between static and dynamic balance measures and between static/dynamic balance, isometric strength, and power variables implies that these capacities may be independent of each other and may have to be tested and trained complementarily. KW - static/dynamic postural control KW - maximal isometric torque KW - rate of torque development KW - jump height/power Y1 - 2013 U6 - https://doi.org/10.1097/JSC.0b013e31825c2bab SN - 1064-8011 VL - 27 IS - 3 SP - 582 EP - 589 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Mühlbauer, Thomas A1 - Kühnen, Matthias A1 - Granacher, Urs T1 - Inline skating for balance and strength promotion in children during physical education JF - Perceptual & motor skills N2 - Deficiencies in balance and strength are common in children and they may lead to injuries. This study investigated the effects of inline skating exercise on balance and strength performance in healthy children. Twenty 11-12-year-old children (8 girls, 12 boys) were assigned to an intervention (n = 10) or a control (n = 10) group. Participants in the intervention group underwent a 4-week inline skating program (2 times/week, 90 min. each) integrated in their physical education lessons. Balance and strength were measured using the Star Excursion Balance test and the countermovement jump test. As compared to the control group, the intervention group significantly improved balance (17-48%, Cohen's d = 0.00-1.49) and jump height (8%, Cohen's d = 0.48). In children, inline skating is a safe, feasible (90% adherence rate), and effective program that can be integrated in physical education lessons to promote balance and strength. Y1 - 2013 U6 - https://doi.org/10.2466/30.06.PMS.117x29z9 SN - 0031-5125 VL - 117 IS - 3 SP - 665 EP - 681 PB - Sage Publ. CY - Missoula ER - TY - BOOK A1 - Mühlbauer, Thomas A1 - Roth, Ralf A1 - Kibele, Armin A1 - Behm, David George A1 - Granacher, Urs ED - Kröger, Christian ED - Roth, Klaus ED - Haag, Herbert T1 - Krafttraining mit Kindern und Jugendlichen BT - theoretische Grundlagen und praktische Umsetzung T3 - Praxisideen N2 - Dieser Band beschäftigt sich mit den theoretischen Grundlagen und der praktischen Umsetzung von Krafttraining mit Kindern und Jugendlichen. Ausgehend von der Kennzeichnung der körperlichen Situation und der Kraftentwicklung im Kindes- und Jugendalter werden die Effekte von Krafttraining bei Kindern und Jugendlichen aufgezeigt. Hierzu zählen neben Verbesserungen der Kraftausdauer, der Maximal- und Schnellkraft, die Förderung elementarer und sportartspezifischer Fertigkeiten sowie die günstige Beeinflussung gesundheitsrelevanter Faktoren (u.a. Verletzungshäufigkeit, Knochenstatus, kardio-vaskuläre und psycho-soziale Kennwerte). Im Anschluss werden neuronale und muskuläre Mechanismen zur Erklärung der trainingsbedingten Anpassungen beschrieben. Das Kernstück des Buches bildet die Darstellung und Beschreibung vielfältiger Übungsbeispiele für ein Krafttraining an Maschinen, mit Freihanteln, Zusatzgeräten, dem eigenen Körpergewicht und ein Sprungkrafttraining. Hierbei wurden insbesondere Übungen ausgewählt, die sich für den Einsatz im Schul- und Vereinssport eignen. Dieses Buch dient somit Lehrern, Übungsleitern und Trainern, ein zielgerichtetes Krafttraining mit Kindern und Jugendlichen wirkungsvoll und sicher durchzuführen. Y1 - 2013 SN - 978-3-7780-2581-9 IS - 58 PB - Hofmann CY - Schorndorf ER - TY - GEN A1 - Gschwind, Yves J. A1 - Kressig, Reto W. A1 - Lacroix, Andre A1 - Mühlbauer, Thomas A1 - Pfenninger, Barbara A1 - Granacher, Urs T1 - A best practice fall prevention exercise program to improve balance, strength/power, and psychosocial health in older adults BT - study protocol for a randomized controlled trial T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background: With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested. Methods/Design: Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale -International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version (` 3 times 3') that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period. Discussion: It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention. KW - seniors KW - fall risk assessment KW - resistance training KW - postural stability Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427104 SN - 1866-8364 IS - 604 ER - TY - JOUR A1 - Granacher, Urs A1 - Lacroix, Andre A1 - Mühlbauer, Thomas A1 - Röttger, Katrin A1 - Gollhofer, Albert T1 - Effects of core instability strength training on trunk muscle strength, spinal mobility, dynamic balance and functional mobility in older adults JF - Gerontology N2 - Background: Age-related postural misalignment, balance deficits and strength/power losses are associated with impaired functional mobility and an increased risk of falling in seniors. Core instability strength training (CIT) involves exercises that are challenging for both trunk muscles and postural control and may thus have the potential to induce benefits in trunk muscle strength, spinal mobility and balance performance. Objective: The objective was to investigate the effects of CIT on measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility in seniors. Methods: Thirty-two older adults were randomly assigned to an intervention group (INT; n = 16, aged 70.8 +/- 4.1 years) that conducted a 9-week progressive CIT or to a control group (n = 16, aged 70.2 +/- 4.5 years). Maximal isometric strength of the trunk flexors/extensors/lateral flexors (right, left)/rotators (right, left) as well as of spinal mobility in the sagittal and the coronal plane was measured before and after the intervention program. Dynamic balance (i.e. walking 10 m on an optoelectric walkway, the Functional Reach test) and functional mobility (Timed Up and Go test) were additionally tested. Results: Program compliance was excellent with participants of the INT group completing 92% of the training sessions. Significant group x test interactions were found for the maximal isometric strength of the trunk flexors (34%, p < 0.001), extensors (21%, p < 0.001), lateral flexors (right: 48%, p < 0.001; left: 53%, p < 0.001) and left rotators (42%, p < 0.001) in favor of the INT group. Further, training-related improvements were found for spinal mobility in the sagittal (11%, p < 0.001) and coronal plane (11%, p = 0.06) directions, for stride velocity (9%, p < 0.05), the coefficient of variation in stride velocity (31%, p < 0.05), the Functional Reach test (20%, p < 0.05) and the Timed Up and Go test (4%, p < 0.05) in favor of the INT group. Conclusion: CIT proved to be a feasible exercise program for seniors with a high adherence rate. Age-related deficits in measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility can be mitigated by CIT. This training regimen could be used as an adjunct or even alternative to traditional balance and/or resistance training. KW - Elderly KW - Gait KW - Muscle strength KW - Physical performance KW - Postural balance Y1 - 2013 U6 - https://doi.org/10.1159/000343152 SN - 0304-324X VL - 59 IS - 2 SP - 105 EP - 113 PB - Karger CY - Basel ER - TY - JOUR A1 - Beijersbergen, Chantal M. I. A1 - Granacher, Urs A1 - Vandervoort, A. A. A1 - DeVita, P. A1 - Hortobagyi, Tibor T1 - The biomechanical mechanism of how strength and power training improves walking speed in old adults remains unknown JF - Ageing research reviews : ARR N2 - Maintaining and increasing walking speed in old age is clinically important because this activity of daily living predicts functional and clinical state. We reviewed evidence for the biomechanical mechanisms of how strength and power training increase gait speed in old adults. A systematic search yielded only four studies that reported changes in selected gait biomechanical variables after an intervention. A secondary analysis of 20 studies revealed an association of r(2) = 0.21 between the 22% and 12% increase, respectively, in quadriceps strength and gait velocity in 815 individuals age 72. In 6 studies, there was a correlation of r(2) = 0.16 between the 19% and 9% gains in plantarflexion strength and gait speed in 240 old volunteers age 75. In 8 studies, there was zero association between the 35% and 13% gains in leg mechanical power and gait speed in 150 old adults age 73. To increase the efficacy of intervention studies designed to improve gait speed and other critical mobility functions in old adults, there is a need for a paradigm shift from conventional (clinical) outcome assessments to more sophisticated biomechanical analyses that examine joint kinematics, kinetics, energetics, muscle-tendon function, and musculoskeletal modeling before and after interventions. KW - Aging KW - Strength training KW - Power training KW - Gait biomechanics Y1 - 2013 U6 - https://doi.org/10.1016/j.arr.2013.03.001 SN - 1568-1637 VL - 12 IS - 2 SP - 618 EP - 627 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Granacher, Urs A1 - Gollhofer, Albert A1 - Hortobagyi, Tibor A1 - Kressig, Reto W. A1 - Mühlbauer, Thomas T1 - The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors a systematic review JF - Sports medicine N2 - Background The aging process results in a number of functional (e.g., deficits in balance and strength/power performance), neural (e.g., loss of sensory/motor neurons), muscular (e.g., atrophy of type-II muscle fibers in particular), and bone-related (e.g., osteoporosis) deteriorations. Traditionally, balance and/or lower extremity resistance training were used to mitigate these age-related deficits. However, the effects of resistance training are limited and poorly translate into improvements in balance, functional tasks, activities of daily living, and fall rates. Thus, it is necessary to develop and design new intervention programs that are specifically tailored to counteract age-related weaknesses. Recent studies indicate that measures of trunk muscle strength (TMS) are associated with variables of static/dynamic balance, functional performance, and falls (i.e., occurrence, fear, rate, and/or risk of falls). Further, there is preliminary evidence in the literature that core strength training (CST) and Pilates exercise training (PET) have a positive influence on measures of strength, balance, functional performance, and falls in older adults. Objective The objectives of this systematic literature review are: (a) to report potential associations between TMS/trunk muscle composition and balance, functional performance, and falls in old adults, and (b) to describe and discuss the effects of CST/PET on measures of TMS, balance, functional performance, and falls in seniors. Data Sources A systematic approach was employed to capture all articles related to TMS/trunk muscle composition, balance, functional performance, and falls in seniors that were identified using the electronic databases PubMed and Web of Science (1972 to February 2013). Study Selection A systematic approach was used to evaluate the 582 articles identified for initial review. Cross-sectional (i.e., relationship) or longitudinal (i.e., intervention) studies were included if they investigated TMS and an outcome-related measure of balance, functional performance, and/or falls. In total, 20 studies met the inclusionary criteria for review. Study Appraisal and Synthesis Methods Longitudinal studies were evaluated using the Physiotherapy Evidence Database (PEDro) scale. Effect sizes (ES) were calculated whenever possible. For ease of discussion, the 20 articles were separated into three groups [i.e., cross-sectional (n = 6), CST (n = 9), PET (n = 5)]. Results The cross-sectional studies reported small-to-medium correlations between TMS/trunk muscle composition and balance, functional performance, and falls in older adults. Further, CST and/or PET proved to be feasible exercise programs for seniors with high-adherence rates. Age-related deficits in measures of TMS, balance, functional performance, and falls can be mitigated by CST (mean strength gain = 30 %, mean effect size = 0.99; mean balance/functional performance gain = 23 %, mean ES = 0.88) and by PET (mean strength gain = 12 %, mean ES = 0.52; mean balance/functional performance gain = 18 %, mean ES = 0.71). Limitations Given that the mean PEDro quality score did not reach the predetermined cut-off of >= 6 for the intervention studies, there is a need for more high-quality studies to explicitly identify the relevance of CST and PET to the elderly population. Conclusions Core strength training and/or PET can be used as an adjunct or even alternative to traditional balance and/or resistance training programs for old adults. Further, CST and PET are easy to administer in a group setting or in individual fall preventive or rehabilitative intervention programs because little equipment and space is needed to perform such exercises. Y1 - 2013 U6 - https://doi.org/10.1007/s40279-013-0041-1 SN - 0112-1642 VL - 43 IS - 7 SP - 627 EP - 641 PB - Springer CY - Auckland ER - TY - JOUR A1 - Mühlbauer, Thomas A1 - Besemer, Carmen A1 - Wehrle, Anja A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Relationship between strength; balance and mobility in children aged 7-10 years JF - Gait & posture N2 - The purpose of this study was to investigate the association between variables of lower extremity muscle strength, balance, and mobility assessed under various task conditions. Twenty-one healthy children (mean age: 9 +/- 1 years) were tested for their isometric and dynamic strength as well as for their steady-state, proactive, and reactive balance and mobility. Balance and mobility tests were conducted under single and dual task conditions. Significant positive correlations were detected between measures of isometric and dynamic leg muscle strength. Hardly any significant associations were observed between variables of strength and balance/mobility and between measures of steady-state, proactive, and reactive balance. Additionally, no significant correlations were detected between balance/mobility tests performed under single and dual task conditions. The predominately non-significant correlations between different balance components and mobility imply that balance and mobility performance is task specific. Further, strength and balance/mobility as well as balance under single and dual task conditions seem to be independent of each other and may have to be tested and trained complementarily. KW - Steady-state balance KW - Proactive/reactive balance KW - Maximal isometric force KW - Jumping height KW - Single/dual tasking KW - Cognitive/motor interference Y1 - 2013 U6 - https://doi.org/10.1016/j.gaitpost.2012.06.022 SN - 0966-6362 VL - 37 IS - 1 SP - 108 EP - 112 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Golle, Kathleen A1 - Granacher, Urs A1 - Hoffmann, Martin A1 - Wick, Ditmar A1 - Mühlbauer, Thomas T1 - Effect of living area and sports club participation on physical fitness in children: a 4 year longitudinal study JF - BMC public health N2 - Background: Cross-sectional studies detected associations between physical fitness, living area, and sports participation in children. Yet, their scientific value is limited because the identification of cause-and-effect relationships is not possible. In a longitudinal approach, we examined the effects of living area and sports club participation on physical fitness development in primary school children from classes 3 to 6. Methods: One-hundred and seventy-two children (age: 9-12 years; sex: 69 girls, 103 boys) were tested for their physical fitness (i.e., endurance [9-min run], speed [50-m sprint], lower- [triple hop] and upper-extremity muscle strength [1-kg ball push], flexibility [stand-and-reach], and coordination [star coordination run]). Living area (i.e., urban or rural) and sports club participation were assessed using parent questionnaire. Results: Over the 4 year study period, urban compared to rural children showed significantly better performance development for upper- (p = 0.009, ES = 0.16) and lower-extremity strength (p < 0.001, ES = 0.22). Further, significantly better performance development were found for endurance (p = 0.08, ES = 0.19) and lower-extremity strength (p = 0.024, ES = 0.23) for children continuously participating in sports clubs compared to their non-participating peers. Conclusions: Our findings suggest that sport club programs with appealing arrangements appear to represent a good means to promote physical fitness in children living in rural areas. KW - Motor performance KW - Youth KW - Primary school KW - Maturation Y1 - 2014 U6 - https://doi.org/10.1186/1471-2458-14-499 SN - 1471-2458 VL - 14 PB - BioMed Central CY - London ER - TY - JOUR A1 - Prieske, Olaf A1 - Wick, Ditmar A1 - Granacher, Urs T1 - Intrasession and intersession reliability in maximal and explosive isometric torque production of the elbow flexors JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - The purpose of this study was to assess intrasession and intersession reliability of maximal and explosive isometric torque production of the elbow flexors and its respective neuromuscular activation pattern. Subjects (13 men, age: 24.8 +/- 3.1 years, height: 1.9 +/- 0.1 m, body mass: 83.7 +/- 12.7 kg; and 6 women, age: 26.5 +/- 1.4 years, height: 1.7 +/- 0.1 m, body mass: 62.7 +/- 7.0 kg) were tested and retested 2-7 days later performing unilateral maximal isometric elbow flexions. Absolute (coefficient of variation[CV], test-retest variability[TRV], Bland-Altman plots with 95% limits of agreement) and relative reliability statistics (intraclass correlation coefficient) were calculated for various mechanical (i.e., maximal isometric torque, rate of torque development, impulse) and electromyographical measures (i.e., mean average voltage) at different time intervals relative to onset of torque (i. e., 30, 50, 100, 200, 300, 400, 100-200 ms). Intraclass correlation coefficient values were >= 0.61 for all mechanical and electromyographical measures and time intervals indicating good to excellent intrasession and intersession reliability. BlandAltman plots confirmed these findings by showing that only 0-2 (<= 3.3%) data points were beyond the limits of agreement. Regarding torque and electromyographic measures, CV (11.9-32.3%) and TRV (18.4-53.8%) values were high during the early intervals of torque development (<= 100 ms) indicating high variability. During the later intervals (>100 ms), lower CV (i. e., 5.0-29.9%) and TRV values (i.e., 5.4-34.6%) were observed indicating lower variability. The present study revealed that neuromuscular performance during explosive torque production of the elbow flexors is reproducible in time intervals >100 ms after onset of isometric actions, whereas during earlier time intervals variability is high. KW - maximal isometric contraction KW - explosive force production KW - electromyography KW - test-retest reliability Y1 - 2014 SN - 1064-8011 SN - 1533-4287 VL - 28 IS - 6 SP - 1771 EP - 1777 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Mühlbauer, Thomas A1 - Mettler, Claude A1 - Roth, Ralf A1 - Granacher, Urs T1 - One-leg standing performance and muscle activity: Are there limb differences? JF - Journal of applied biomechanics N2 - The purpose of this study was to compare static balance performance and muscle activity during one-leg standing on the dominant and nondominant leg under various sensory conditions with increased levels of task difficulty. Thirty healthy young adults (age: 23 +/- 2 years) performed one-leg standing tests for 30 s under three sensory conditions (ie, eyes open/firm ground; eyes open/foam ground [elastic pad on top of the balance plate]; eyes closed/firm ground). Center of pressure displacements and activity of four lower leg muscles (ie, m. tibialis anterior [TA], m. soleus [SOL], m. gastrocnemius medialis [GAS], m. peroneus longus [PER]) were analyzed. An increase in sensory task difficulty resulted in deteriorated balance performance (P < .001, effect size [ES] = .57-2.54) and increased muscle activity (P < .001, ES = .50-1.11) for all but two muscles (ie, GAS, PER). However, regardless of the sensory condition, one-leg standing on the dominant as compared with the nondominant limb did not produce statistically significant differences in various balance (P > .05, ES = .06-.22) and electromyographic (P > .05, ES = .03-.13) measures. This indicates that the dominant and the nondominant leg can be used interchangeably during static one-leg balance testing in healthy young adults. KW - postural control KW - electromyography KW - sensory input KW - task difficulty Y1 - 2014 U6 - https://doi.org/10.1123/jab.2013-0230 SN - 1065-8483 SN - 1543-2688 VL - 30 IS - 3 SP - 407 EP - 414 PB - Human Kinetics Publ. CY - Champaign ER - TY - GEN A1 - Kibele, Armin A1 - Classen, Claudia A1 - Mühlbauer, Thomas A1 - Granacher, Urs A1 - Behm, David George T1 - Metastability in plyometric training on unstable surfaces BT - a pilot study T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background In the past, plyometric training (PT) has been predominantly performed on stable surfaces. The purpose of this pilot study was to examine effects of a 7-week lower body PT on stable vs. unstable surfaces. This type of exercise condition may be denoted as metastable equilibrium. Methods Thirty-three physically active male sport science students (age: 24.1 ± 3.8 years) were randomly assigned to a PT group (n = 13) exercising on stable (STAB) and a PT group (n = 20) on unstable surfaces (INST). Both groups trained countermovement jumps, drop jumps, and practiced a hurdle jump course. In addition, high bar squats were performed. Physical fitness tests on stable surfaces (hexagonal obstacle test, countermovement jump, hurdle drop jump, left-right hop, dynamic and static balance tests, and leg extension strength) were used to examine the training effects. Results Significant main effects of time (ANOVA) were found for the countermovement jump, hurdle drop jump, hexagonal test, dynamic balance, and leg extension strength. A significant interaction of time and training mode was detected for the countermovement jump in favor of the INST group. No significant improvements were evident for either group in the left-right hop and in the static balance test. Conclusions These results show that lower body PT on unstable surfaces is a safe and efficient way to improve physical performance on stable surfaces. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 606 KW - instability resistance training KW - stretch-shortening cycle KW - physical fitness test KW - balance training Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429013 SN - 1866-8364 IS - 606 ER - TY - JOUR A1 - Lesinski, Melanie A1 - Mühlbauer, Thomas A1 - Buesch, Dirk A1 - Granacher, Urs T1 - Effects of complex training on strength and speed performance in athletes: A systematic review effects of complex training on athletic performance JF - Sportverletzung, Sportschaden : Grundlagen, Prävention, Rehabilitation N2 - Background: Post-activation potentiation (PAP) can elicit acute performance enhancements in variables of strength, power, and speed. However, it is unresolved whether the frequent integration of PAP eliciting conditioning activities in training (i.e., complex training) results in long-term adaptations. In this regard, it is of interest to know whether complex training results in larger performance enhancements as compared to more traditional and isolated training regimens (e. g., resistance training). Thus, this systematic literature review summarises the current state of the art regarding the effects of complex training on measures of strength, power, and speed in recreational, subelite, and elite athletes. Further, it provides information on training volume and intensities that proved to be effective. Methods: Our literature search included the electronic databases Pubmed, SportDiscus, and Web of Science (1995 to September 2013). In total, 17 studies met the inclusionary criteria for review. Ten studies examined alternating complex training and 7 studies sequenced complex training. Results: Our findings indicated small to large effects for both alternating complex training (countermovement jump height: +7.4 % [ESd = -0.43]; squat jump height: +9.8 % [ESd = -0.66]; sprint time: -2.4% [ESd = 0.63]) and sequenced complex training (countermovement jump height: +6.0 % [ESd = -0.83]; squat jump height: +11.9% [ESd = -0.97], sprint time: -0.7% [ESd = 0.52]) in measures of power and speed. As compared to more traditional training regimens, alternating and sequenced complex training showed only small effects in measures of strength, power, and speed. A more detailed analysis of alternating complex training revealed larger effects in countermovement jump height in recreational athletes (+9.7% [ESd = -0.57]) as compared to subelite and elite athletes (+2.7% [ESd = -0.15]). Based on the relevant and currently available literature, missing data (e.g., time for rest interval) and diverse information regarding training volume and intensity do not allow us to establish evidence-based dose-response relations for complex training. Conclusion: Complex training represents an effective training regimen for athletes if the goal is to enhance strength, power, and speed. Studies with high methodological quality have to be conducted in the future to elucidate whether complex training is less, similar, or even more effective compared to more traditional training regimens. Finally, it should be clarified whether alternated and/or sequenced conditioning activities implemented in complex training actually elicit acute PAP effects. KW - resistance training KW - plyometric training KW - dose-response relation KW - athletic performance KW - elite sport Y1 - 2014 U6 - https://doi.org/10.1055/s-0034-1366145 SN - 0932-0555 SN - 1439-1236 VL - 28 IS - 2 SP - 85 EP - 107 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Granacher, Urs A1 - Mühlbauer, Thomas A1 - Gschwind, Y. J. A1 - Pfenninger, B. A1 - Kressig, R. W. T1 - Assessment and training of strength and balance for fall prevention in the elderly. Recommendations of an interdisciplinary expert panel JF - Zeitschrift für Gerontologie und Geriatrie N2 - The proportion of elderly people in societies of western industrialized countries is continuously rising. Biologic aging induces deficits in balance and muscle strength/power in old age, which is responsible for an increased prevalence of falls. Therefore, nationwide and easy-to-administer fall prevention programs have to be developed in order to contribute to the autonomy and quality of life in old age and to help reduce the financial burden on the public health care system due to the treatment of fall-related injuries. This narrative (qualitative) literature review deals with a) the reasons for an increased prevalence of falls in old age, b) important clinical tests for fall-risk assessment, and c) evidence-based intervention/training programs for fall prevention in old age. The findings of this literature review are based on a cost-free practice guide that is available to the public (via the internet) and that was created by an expert panel (i.e., geriatricians, exercise scientists, physiotherapists, geriatric therapists). The present review provides the scientific foundation of the practice guide. KW - Fall risk KW - Resistance training KW - Preventive therapy KW - Exercise therapy KW - Frail elderly Y1 - 2014 U6 - https://doi.org/10.1007/s00391-013-0509-5 SN - 0948-6704 SN - 1435-1269 VL - 47 IS - 6 SP - 513 EP - 525 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Golle, Kathleen A1 - Granacher, Urs A1 - Hoffmann, Martin A1 - Wick, Ditmar A1 - Mühlbauer, Thomas T1 - Effect of living area and sports club participation on physical fitness in children BT - a 4 year longitudinal study N2 - Background: Cross-sectional studies detected associations between physical fitness, living area, and sports participation in children. Yet, their scientific value is limited because the identification of cause-and-effect relationships is not possible. In a longitudinal approach, we examined the effects of living area and sports club participation on physical fitness development in primary school children from classes 3 to 6. Methods: One-hundred and seventy-two children (age: 9-12 years; sex: 69 girls, 103 boys) were tested for their physical fitness (i.e., endurance [9-min run], speed [50-m sprint], lower- [triple hop] and upper-extremity muscle strength [1-kg ball push], flexibility [stand-and-reach], and coordination [star coordination run]). Living area (i.e., urban or rural) and sports club participation were assessed using parent questionnaire. Results: Over the 4 year study period, urban compared to rural children showed significantly better performance development for upper- (p = 0.009, ES = 0.16) and lower-extremity strength (p < 0.001, ES = 0.22). Further, significantly better performance development were found for endurance (p = 0.08, ES = 0.19) and lower-extremity strength (p = 0.024, ES = 0.23) for children continuously participating in sports clubs compared to their non-participating peers. Conclusions: Our findings suggest that sport club programs with appealing arrangements appear to represent a good means to promote physical fitness in children living in rural areas. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 360 KW - motor performance KW - youth KW - primary school KW - maturation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401418 ER - TY - JOUR A1 - Granacher, Urs A1 - Schellbach, Jörg A1 - Klein, Katja A1 - Prieske, Olaf A1 - Baeyens, Jean-Pierre A1 - Mühlbauer, Thomas T1 - Effects of core strength training using stable versus unstable surfaces on physical fitness in adolescents BT - a randomized controlled trial JF - BMC sports science, medicine & rehabilitation N2 - Background It has been demonstrated that core strength training is an effective means to enhance trunk muscle strength (TMS) and proxies of physical fitness in youth. Of note, cross-sectional studies revealed that the inclusion of unstable elements in core strengthening exercises produced increases in trunk muscle activity and thus provide potential extra training stimuli for performance enhancement. Thus, utilizing unstable surfaces during core strength training may even produce larger performance gains. However, the effects of core strength training using unstable surfaces are unresolved in youth. This randomized controlled study specifically investigated the effects of core strength training performed on stable surfaces (CSTS) compared to unstable surfaces (CSTU) on physical fitness in school-aged children. Methods Twenty-seven (14 girls, 13 boys) healthy subjects (mean age: 14 ± 1 years, age range: 13–15 years) were randomly assigned to a CSTS (n = 13) or a CSTU (n = 14) group. Both training programs lasted 6 weeks (2 sessions/week) and included frontal, dorsal, and lateral core exercises. During CSTU, these exercises were conducted on unstable surfaces (e.g., TOGU© DYNAIR CUSSIONS, THERA-BAND© STABILITY TRAINER). Results Significant main effects of Time (pre vs. post) were observed for the TMS tests (8-22%, f = 0.47-0.76), the jumping sideways test (4-5%, f = 1.07), and the Y balance test (2-3%, f = 0.46-0.49). Trends towards significance were found for the standing long jump test (1-3%, f = 0.39) and the stand-and-reach test (0-2%, f = 0.39). We could not detect any significant main effects of Group. Significant Time x Group interactions were detected for the stand-and-reach test in favour of the CSTU group (2%, f = 0.54). Conclusions Core strength training resulted in significant increases in proxies of physical fitness in adolescents. However, CSTU as compared to CSTS had only limited additional effects (i.e., stand-and-reach test). Consequently, if the goal of training is to enhance physical fitness, then CSTU has limited advantages over CSTS. KW - Resistance training KW - Trunk muscle strength KW - Physical fitness Y1 - 2014 U6 - https://doi.org/10.1186/2052-1847-6-40 SN - 2052-1847 VL - 6 PB - BioMed Central CY - London ER - TY - JOUR A1 - Granacher, Urs A1 - Lacroix, Andre A1 - Roettger, Katrin A1 - Gollhofer, Albert A1 - Mühlbauer, Thomas T1 - Relationships between trunk muscle strength, spinal mobility, and balance performance in older adults JF - Journal of aging and physical activity N2 - This study investigated associations between variables of trunk muscle strength (TMS), spinal mobility, and balance in seniors. Thirty-four seniors (sex: 18 female, 16 male; age: 70 +/- 4 years; activity level: 13 +/- 7 hr/week) were tested for maximal isometric strength (MIS) of the trunk extensors, flexors, lateral flexors, rotators, spinal mobility, and steady-state, reactive, and proactive balance. Significant correlations were detected between all measures of TMS and static steady-state balance (r = .43.57, p < .05). Significant correlations were observed between specific measures of TMS and dynamic steady-state balance (r = .42.55, p < .05). No significant correlations were found between all variables of TMS and reactive/proactive balance and between all variables of spinal mobility and balance. Regression analyses revealed that TMS explains between 1-33% of total variance of the respective balance parameters. Findings indicate that TMS is related to measures of steady-state balance which may imply that TMS promoting exercises should be integrated in strength training for seniors. KW - elderly KW - core KW - gait KW - postural balance KW - force KW - physical performance Y1 - 2014 U6 - https://doi.org/10.1123/JAPA.2013-0108 SN - 1063-8652 SN - 1543-267X VL - 22 IS - 4 SP - 490 EP - 498 PB - Human Kinetics Publ. CY - Champaign ER - TY - JOUR A1 - Meyer, Ursina A1 - Ernst, Dominique A1 - Schott, Silvia A1 - Riera, Claudia A1 - Hattendorf, Jan A1 - Romkes, Jacqueline A1 - Granacher, Urs A1 - Göpfert, Beat A1 - Kriemler, Susi T1 - Validation of two accelerometers to determine mechanical loading of physical activities in children JF - Journal of sports sciences N2 - The purpose of this study was to assess the validity of accelerometers using force plates (i.e., ground reaction force (GRF)) during the performance of different tasks of daily physical activity in children. Thirteen children (10.1 (range 5.4-15.7)years, 3 girls) wore two accelerometers (ActiGraph GT3X+ (ACT), GENEA (GEN)) at the hip that provide raw acceleration signals at 100Hz. Participants completed different tasks (walking, jogging, running, landings from boxes of different height, rope skipping, dancing) on a force plate. GRF was collected for one step per trial (10 trials) for ambulatory movements and for all landings (10 trials), rope skips and dance procedures. Accelerometer outputs as peak loading (g) per activity were averaged. ANOVA, correlation analyses and Bland-Altman plots were computed to determine validity of accelerometers using GRF. There was a main effect of task with increasing acceleration values in tasks with increasing locomotion speed and landing height (P<0.001). Data from ACT and GEN correlated with GRF (r=0.90 and 0.89, respectively) and between each other (r=0.98), but both accelerometers consistently overestimated GRF. The new generation of accelerometer models that allow raw signal detection are reasonably accurate to measure impact loading of bone in children, although they systematically overestimate GRF. KW - bone KW - impact loading KW - children KW - physical activity KW - ground reaction force Y1 - 2015 U6 - https://doi.org/10.1080/02640414.2015.1004638 SN - 0264-0414 SN - 1466-447X VL - 33 IS - 16 SP - 1702 EP - 1709 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Golle, Kathleen A1 - Mühlbauer, Thomas A1 - Wick, Ditmar A1 - Granacher, Urs T1 - Physical Fitness Percentiles of German Children Aged 9-12 Years: Findings from a Longitudinal Study JF - PLoS one N2 - Background Generating percentile values is helpful for the identification of children with specific fitness characteristics (i. e., low or high fitness level) to set appropriate fitness goals (i. e., fitness/ health promotion and/or long-term youth athlete development). Thus, the aim of this longitudinal study was to assess physical fitness development in healthy children aged 9-12 years and to compute sex-and age-specific percentile values. Methods Two-hundred and forty children (88 girls, 152 boys) participated in this study and were tested for their physical fitness. Physical fitness was assessed using the 50-m sprint test (i. e., speed), the 1-kg ball push test, the triple hop test (i. e., upper-and lower-extremity muscular power), the stand-and-reach test (i. e., flexibility), the star run test (i. e., agility), and the 9-min run test (i. e., endurance). Age-and sex-specific percentile values (i. e., P-10 to P-90) were generated using the Lambda, Mu, and Sigma method. Adjusted (for change in body weight, height, and baseline performance) age-and sex-differences as well as the interactions thereof were expressed by calculating effect sizes (Cohen's d). Results Significant main effects of Age were detected for all physical fitness tests (d = 0.40-1.34), whereas significant main effects of Sex were found for upper-extremity muscular power (d = 0.55), flexibility (d = 0.81), agility (d = 0.44), and endurance (d = 0.32) only. Further, significant Sex by Age interactions were observed for upper-extremity muscular power (d = 0.36), flexibility (d = 0.61), and agility (d = 0.27) in favor of girls. Both, linear and curvilinear shaped curves were found for percentile values across the fitness tests. Accelerated (curvilinear) improvements were observed for upper-extremity muscular power (boys: 10-11 yrs; girls: 9-11 yrs), agility (boys: 9-10 yrs; girls: 9-11 yrs), and endurance (boys: 9-10 yrs; girls: 9-10 yrs). Tabulated percentiles for the 9-min run test indicated that running distances between 1,407-1,507 m, 1,479-1,597 m, 1,423-1,654 m, and 1,433-1,666 m in 9-to 12-year-old boys and 1,262-1,362 m, 1,329-1,434 m, 1,392-1,501 m, and 1,415-1,526 m in 9-to 12-year-old girls correspond to a "medium" fitness level (i. e., P-40 to P-60) in this population. Conclusions The observed differences in physical fitness development between boys and girls illustrate that age- and sex-specific maturational processes might have an impact on the fitness status of healthy children. Our statistical analyses revealed linear (e. g., lower-extremity muscular power) and curvilinear (e. g., agility) models of fitness improvement with age which is indicative of timed and capacity-specific fitness development pattern during childhood. Lastly, the provided age-and sex-specific percentile values can be used by coaches for talent identification and by teachers for rating/ grading of children's motor performance. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0142393 SN - 1932-6203 VL - 10 IS - 11 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Beurskens, Rainer A1 - Gollhofer, Albert A1 - Mühlbauer, Thomas A1 - Cardinale, Marco A1 - Granacher, Urs T1 - Effects of Heavy-Resistance Strength and Balance Training on Unilateral and Bilateral Leg Strength Performance in Old Adults JF - PLoS one N2 - The term "bilateral deficit" (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20-30 years) and old adults (age: > 65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 x /week) at 80% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre-and post-tests included uni-and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni-and bilateral MIF (all p < .001; d = 2.61-3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni-and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0118535 SN - 1932-6203 VL - 10 IS - 2 PB - PLoS CY - San Fransisco ER -