TY - GEN A1 - Bouamra, Marwa A1 - Zouhal, Hassane A1 - Ratel, Sébastien A1 - Makhlouf, Issam A1 - Bezrati, Ikram A1 - Chtara, Moktar A1 - Behm, David George A1 - Granacher, Urs A1 - Chaouachi, Anis T1 - Concurrent Training Promotes Greater Gains on Body Composition and Components of Physical Fitness Than Single-Mode Training (Endurance or Resistance) in Youth With Obesity T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The prevalence of obesity in the pediatric population has become a major public health issue. Indeed, the dramatic increase of this epidemic causes multiple and harmful consequences, Physical activity, particularly physical exercise, remains to be the cornerstone of interventions against childhood obesity. Given the conflicting findings with reference to the relevant literature addressing the effects of exercise on adiposity and physical fitness outcomes in obese children and adolescents, the effect of duration-matched concurrent training (CT) [50% resistance (RT) and 50% high-intensity-interval-training (HIIT)] on body composition and physical fitness in obese youth remains to be elucidated. Thus, the purpose of this study was to examine the effects of 9-weeks of CT compared to RT or HIIT alone, on body composition and selected physical fitness components in healthy sedentary obese youth. Out of 73 participants, only 37; [14 males and 23 females; age 13.4 ± 0.9 years; body-mass-index (BMI): 31.2 ± 4.8 kg·m-2] were eligible and randomized into three groups: HIIT (n = 12): 3-4 sets×12 runs at 80–110% peak velocity, with 10-s passive recovery between bouts; RT (n = 12): 6 exercises; 3–4 sets × 10 repetition maximum (RM) and CT (n = 13): 50% serial completion of RT and HIIT. CT promoted significant greater gains compared to HIIT and RT on body composition (p < 0.01, d = large), 6-min-walking test distance (6 MWT-distance) and on 6 MWT-VO2max (p < 0.03, d = large). In addition, CT showed substantially greater improvements than HIIT in the medicine ball throw test (20.2 vs. 13.6%, p < 0.04, d = large). On the other hand, RT exhibited significantly greater gains in relative hand grip strength (p < 0.03, d = large) and CMJ (p < 0.01, d = large) than HIIT and CT. CT promoted greater benefits for fat, body mass loss and cardiorespiratory fitness than HIIT or RT modalities. This study provides important information for practitioners and therapists on the application of effective exercise regimes with obese youth to induce significant and beneficial body composition changes. The applied CT program and the respective programming parameters in terms of exercise intensity and volume can be used by practitioners as an effective exercise treatment to fight the pandemic overweight and obesity in youth. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 791 KW - weight loss KW - adolescents KW - high-intensity-interval training KW - resistance training KW - DXA KW - matched time Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-563974 SN - 1866-8364 SP - 1 EP - 16 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Brahms, Markus A1 - Heinzel, Stephan A1 - Rapp, Michael A. A1 - Mückstein, Marie A1 - Hortobágyi, Tibor A1 - Stelzel, Christine A1 - Granacher, Urs T1 - The acute effects of mental fatigue on balance performance in healthy young and older adults – A systematic review and meta-analysis T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Cognitive resources contribute to balance control. There is evidence that mental fatigue reduces cognitive resources and impairs balance performance, particularly in older adults and when balance tasks are complex, for example when trying to walk or stand while concurrently performing a secondary cognitive task. We conducted a systematic literature search in PubMed (MEDLINE), Web of Science and Google Scholar to identify eligible studies and performed a random effects meta-analysis to quantify the effects of experimentally induced mental fatigue on balance performance in healthy adults. Subgroup analyses were computed for age (healthy young vs. healthy older adults) and balance task complexity (balance tasks with high complexity vs. balance tasks with low complexity) to examine the moderating effects of these factors on fatigue-mediated balance performance. We identified 7 eligible studies with 9 study groups and 206 participants. Analysis revealed that performing a prolonged cognitive task had a small but significant effect (SMDwm = −0.38) on subsequent balance performance in healthy young and older adults. However, age- and task-related differences in balance responses to fatigue could not be confirmed statistically. Overall, aggregation of the available literature indicates that mental fatigue generally reduces balance in healthy adults. However, interactions between cognitive resource reduction, aging and balance task complexity remain elusive. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 779 KW - Cognitive fatigue KW - Exertion KW - Tiredness KW - Postural control KW - Gait KW - Sway Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-561560 SN - 1866-8364 SP - 1 EP - 13 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Bohle, Hannah A1 - Rimpel, Jérôme A1 - Schauenburg, Gesche A1 - Gebel, Arnd A1 - Stelzel, Christine A1 - Heinzel, Stephan A1 - Rapp, Michael A. A1 - Granacher, Urs T1 - Behavioral and Neural Correlates of Cognitive-Motor Interference during Multitasking in Young and Old Adults T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - The concurrent performance of cognitive and postural tasks is particularly impaired in old adults and associated with an increased risk of falls. Biological aging of the cognitive and postural control system appears to be responsible for increased cognitive-motor interference effects. We examined neural and behavioral markers of motor-cognitive dual-task performance in young and old adults performing spatial one-back working memory single and dual tasks during semitandem stance. On the neural level, we used EEG to test for age-related modulations in the frequency domain related to cognitive-postural task load. Twenty-eight healthy young and 30 old adults participated in this study. The tasks included a postural single task, a cognitive-postural dual task, and a cognitive-postural triple task (cognitive dual-task with postural demands). Postural sway (i.e., total center of pressure displacements) was recorded in semistance position on an unstable surface that was placed on top of a force plate while performing cognitive tasks. Neural activation was recorded using a 64-channel mobile EEG system. EEG frequencies were attenuated by the baseline postural single-task condition and demarcated in nine Regions-of-Interest (ROIs), i.e., anterior, central, posterior, over the cortical midline, and both hemispheres. Our findings revealed impaired cognitive dual-task performance in old compared to young participants in the form of significantly lower cognitive performance in the triple-task condition. Furthermore, old adults compared with young adults showed significantly larger postural sway, especially in cognitive-postural task conditions. With respect to EEG frequencies, young compared to old participants showed significantly lower alpha-band activity in cognitive-cognitive-postural triple-task conditions compared with cognitive-postural dual tasks. In addition, with increasing task difficulty, we observed synchronized theta and delta frequencies, irrespective of age. Taskdependent alterations of the alpha frequency band were most pronounced over frontal and central ROIs, while alterations of the theta and delta frequency bands were found in frontal, central, and posterior ROIs. Theta and delta synchronization exhibited a decrease from anterior to posterior regions. For old adults, task difficulty was reflected by theta synchronization in the posterior ROI. For young adults, it was reflected by alpha desynchronization in bilateral anterior ROIs. In addition, we could not identify any effects of task difficulty and age on the beta frequency band. Our results shed light on age-related cognitive and postural declines and how they interact. Modulated alpha frequencies during high cognitive-postural task demands in young but not old adults might be reflective of a constrained neural adaptive potential in old adults. Future studies are needed to elucidate associations between the identified age-related performance decrements with task difficulty and changes in brain activity. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 563 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435972 SN - 1866-8364 IS - 563 ER -