TY - JOUR A1 - Reinecke, Robert A1 - Trautmann, Tim A1 - Wagener, Thorsten A1 - Schüler, Katja T1 - The critical need to foster computational reproducibility JF - Environmental research letters KW - reproducibility KW - models KW - software KW - Open Science Y1 - 2022 U6 - https://doi.org/10.1088/1748-9326/ac5cf8 SN - 1748-9326 VL - 17 IS - 4 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Huth, Sabrina A1 - Pang, Peter Tsun Ho A1 - Tews, Ingo A1 - Dietrich, Tim A1 - Le Fèvre, Arnaud A1 - Schwenk, Achim A1 - Trautmann, Wolfgang A1 - Agarwal, Kshitij A1 - Bulla, Mattia A1 - Coughlin, Michael W. A1 - Van den Broeck, Chris T1 - Constraining neutron-star matter with microscopic and macroscopic collisions JF - Nature : the international weekly journal of science N2 - Interpreting high-energy, astrophysical phenomena, such as supernova explosions or neutron-star collisions, requires a robust understanding of matter at supranuclear densities. However, our knowledge about dense matter explored in the cores of neutron stars remains limited. Fortunately, dense matter is not probed only in astrophysical observations, but also in terrestrial heavy-ion collision experiments. Here we use Bayesian inference to combine data from astrophysical multi-messenger observations of neutron stars(1-9) and from heavy-ion collisions of gold nuclei at relativistic energies(10,11) with microscopic nuclear theory calculations(12-17) to improve our understanding of dense matter. We find that the inclusion of heavy-ion collision data indicates an increase in the pressure in dense matter relative to previous analyses, shifting neutron-star radii towards larger values, consistent with recent observations by the Neutron Star Interior Composition Explorer mission(5-8,18). Our findings show that constraints from heavy-ion collision experiments show a remarkable consistency with multi-messenger observations and provide complementary information on nuclear matter at intermediate densities. This work combines nuclear theory, nuclear experiment and astrophysical observations, and shows how joint analyses can shed light on the properties of neutron-rich supranuclear matter over the density range probed in neutron stars. Y1 - 2022 U6 - https://doi.org/10.1038/s41586-022-04750-w SN - 0028-0836 SN - 1476-4687 VL - 606 IS - 7913 SP - 276 EP - 295 PB - Nature Publ. Group CY - London [u.a.] ER -