TY - JOUR A1 - Nitschke, Felix A1 - Wang, Peixiang A1 - Schmieder, Peter A1 - Girard, Jean-Marie A1 - Awrey, Donald E. A1 - Wang, Tony A1 - Israelian, Johan A1 - Zhao, XiaoChu A1 - Turnbull, Julie A1 - Heydenreich, Matthias A1 - Kleinpeter, Erich A1 - Steup, Martin A1 - Minassian, Berge A. T1 - Hyperphosphorylation of glucosyl C6 carbons and altered structure of glycogen in the neurodegenerative epilepsy lafora disease JF - Cell metabolism N2 - Laforin or malin deficiency causes Lafora disease, characterized by altered glycogen metabolism and teenage-onset neurodegeneration with intractable and invariably fatal epilepsy. Plant starches possess small amounts of metabolically essential monophosphate esters. Glycogen contains similar phosphate amounts, which are thought to originate from a glycogen synthase error side reaction and therefore lack any specific function. Glycogen is also believed to lack monophosphates at glucosyl carbon C6, an essential phosphorylation site in plant starch metabolism. We now show that glycogen phosphorylation is not due to a glycogen synthase side reaction, that C6 is a major glycogen phosphorylation site, and that C6 monophosphates predominate near centers of glycogen molecules and positively correlate with glycogen chain lengths. Laforin or malin deficiency causes C6 hyperphosphorylation, which results in malformed long-chained glycogen that accumulates in many tissues, causing neurodegeneration in brain. Our work advances the understanding of Lafora disease pathogenesis and suggests that glycogen phosphorylation has important metabolic function. Y1 - 2013 U6 - https://doi.org/10.1016/j.cmet.2013.04.006 SN - 1550-4131 SN - 1932-7420 VL - 17 IS - 5 SP - 756 EP - 767 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Yang, Jie A1 - Zhu, Xiaolei A1 - Wolf, Thomas J. A. A1 - Li, Zheng A1 - Nunes, João Pedro Figueira A1 - Coffee, Ryan A1 - Cryan, James P. A1 - Gühr, Markus A1 - Hegazy, Kareem A1 - Heinz, Tony F. A1 - Jobe, Keith A1 - Li, Renkai A1 - Shen, Xiaozhe A1 - Veccione, Theodore A1 - Weathersby, Stephen A1 - Wilkin, Kyle J. A1 - Yoneda, Charles A1 - Zheng, Qiang A1 - Martinez, Todd J. A1 - Centurion, Martin A1 - Wang, Xijie T1 - Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction JF - Science N2 - Conical intersections play a critical role in excited-state dynamics of polyatomic molecules because they govern the reaction pathways of many nonadiabatic processes. However, ultrafast probes have lacked sufficient spatial resolution to image wave-packet trajectories through these intersections directly. Here, we present the simultaneous experimental characterization of one-photon and two-photon excitation channels in isolated CF3I molecules using ultrafast gas-phase electron diffraction. In the two-photon channel, we have mapped out the real-space trajectories of a coherent nuclear wave packet, which bifurcates onto two potential energy surfaces when passing through a conical intersection. In the one-photon channel, we have resolved excitation of both the umbrella and the breathing vibrational modes in the CF3 fragment in multiple nuclear dimensions. These findings benchmark and validate ab initio nonadiabatic dynamics calculations. Y1 - 2018 U6 - https://doi.org/10.1126/science.aat0049 SN - 0036-8075 SN - 1095-9203 VL - 361 IS - 6397 SP - 64 EP - 67 PB - American Assoc. for the Advancement of Science CY - Washington ER -