TY - JOUR A1 - Mantiloni, Lorenzo A1 - Davis, Timothy A1 - Gaete Rojas, Ayleen Barbara A1 - Rivalta, Eleonora T1 - Stress inversion in a gelatin box BT - testing eruptive vent location forecasts with analog models JF - Geophysical research letters : GRL / American Geophysical Union N2 - Assessing volcanic hazard in regions of distributed volcanism is challenging because of the uncertain location of future vents. A statistical-mechanical strategy to forecast such locations was recently proposed: here, we further develop and test it with analog models. We stress a gelatin block laterally and with surface excavations, and observe air-filled crack trajectories. We use the observed surface arrivals to sample the distributions of parameters describing the stress state of the gelatin block, combining deterministic crack trajectory simulations with a Monte Carlo approach. While the individual stress parameters remain unconstrained, we effectively retrieve their ratio and successfully forecast the arrival points of subsequent cracks. KW - analog experiment KW - calderas KW - continental rifts KW - dike propagation KW - dike KW - trajectories KW - stress field Y1 - 2021 U6 - https://doi.org/10.1029/2020GL090407 SN - 0094-8276 SN - 1944-8007 VL - 48 IS - 6 PB - American Geophysical Union CY - Washington ER - TY - THES A1 - Davis, Timothy T1 - An analytical and numerical analysis of fluid-filled crack propagation in three dimensions T1 - Analytische und numerische Untersuchung der dreidimensionalen Ausbreitung von fluidgefüllten Rissen N2 - Fluids in the Earth's crust can move by creating and flowing through fractures, in a process called `hydraulic fracturing’. The tip-line of such fluid-filled fractures grows at locations where stress is larger than the strength of the rock. Where the tip stress vanishes, the fracture closes and the fluid-front retreats. If stress gradients exist on the fracture's walls, induced by fluid/rock density contrasts or topographic stresses, this results in an asymmetric shape and growth of the fracture, allowing for the contained batch of fluid to propagate through the crust. The state-of-the-art analytical and numerical methods to simulate fluid-filled fracture propagation are two-dimensional (2D). In this work I extend these to three dimensions (3D). In my analytical method, I approximate the propagating 3D fracture as a penny-shaped crack that is influenced by both an internal pressure and stress gradients. In addition, I develop a numerical method to model propagation where curved fractures can be simulated as a mesh of triangular dislocations, with the displacement of faces computed using the displacement discontinuity method. I devise a rapid technique to approximate stress intensity and use this to calculate the advance of the tip-line. My 3D models can be applied to arbitrary stresses, topographic and crack shapes, whilst retaining short computation times. I cross-validate my analytical and numerical methods and apply them to various natural and man-made settings, to gain additional insights into the movements of hydraulic fractures such as magmatic dikes and fluid injections in rock. In particular, I calculate the `volumetric tipping point’, which once exceeded allows a fluid-filled fracture to propagate in a `self-sustaining’ manner. I discuss implications this has for hydro-fracturing in industrial operations. I also present two studies combining physical models that define fluid-filled fracture trajectories and Bayesian statistical techniques. In these studies I show that the stress history of the volcanic edifice defines the location of eruptive vents at volcanoes. Retrieval of the ratio between topographic to remote stresses allows for forecasting of probable future vent locations. Finally, I address the mechanics of 3D propagating dykes and sills in volcanic regions. I focus on Sierra Negra volcano in the Gal\'apagos islands, where in 2018, a large sill propagated with an extremely curved trajectory. Using a 3D analysis, I find that shallow horizontal intrusions are highly sensitive to topographic and buoyancy stress gradients, as well as the effects of the free surface. N2 - Flüssigkeiten und Gase (Fluide) können sich in der Erdkruste bewegen, indem sie Risse erzeugen und durch diese fließen. Die Mechanik dieses Problems wird im Forschungsbereich der Bruchmechanik beschrieben. Das Vorhandensein von Spannungsgradienten verursacht einen Rissausbreitungsvorgang durch die Erdkruste. Auf den Flächen dieser Rissufer können verschiedene Arten von Belastungen auftreten, welche definieren, wie sich die Rissfront vergrößert. In dieser Arbeit adaptiere ich zuvor entwickelte zweidimensionale (2D) Modelle der flüssigkeitsgefüllten Bruchausbreitung für drei Dimensionen (3D). Anhand der dreidimensionalen Betrachtung können die Bewegungen dieser Frakturen detaillierter untersucht werden. Analoge und neotektonische Beobachtungen, die mit vorhandenen 2D-Techniken nicht beschreibbar waren, können mit der neuen Technik erklärt werden. Zusätzlich beschreibe ich, wie man mit einer 3D Randelementmethode (boundary element method) Spannungsintensitätsfaktoren berechnen und komplexe Rissgeometrien erfassen kann. Die Rechenzeiten sind vergleichbar mit 2D-Modellen. Ich stelle neue Analysetechniken bereit, mit denen diese Probleme schnell, aber kohärent quantifiziert werden können. Ich verwende diese 3D-Techniken, um eine Reihe von Fallstudien zu untersuchen, wobei ich mich zunächst auf den Wendepunkt konzentriere, ab dem sich der mit Fluiden gefüllte Riss autark bewegt. Ich habe herausgefunden, dass dies durch das in der Fraktur enthaltene Volumen beschrieben werden kann, was Auswirkungen auf den industriellen Betrieb hat. Anschließend präsentiere ich zwei Studien, die physikalische Rissausbreitungsmodelle und Bayes‘sche statistische Techniken kombinieren. Ich zeige, dass die Spannungshistorie den Ort eruptiver Entlüftungsöffnungen definiert und dass die Einbeziehung der topografischen und tektonischen Spannungsverhältnisse mit diesem Schema die Vorhersage wahrscheinlicher zukünftiger Entlüftungsstellen ermöglicht. Mit dem 3D Randelementmethode befasse ich mich mit der Ausbreitung von Gängen und Lavagängen in vulkanischen Regionen. Ich konzentriere mich auf eine Fallstudie vom Vulkan Sierra Negra auf den Galapagos-Inseln, auf der eine große Lavagängen beobachteten wurden, die sich mit einer stark gekrümmten Kurve ausbreitet. Ich habe heraus gefunden, dass die Bewegung von Lavagängen in solchen Systemen aus einer Wechselwirkung von topografischen- und Auftriebs- Spannungsgradienten sowie den Auswirkungen von Halbraumeffekten resultieren. KW - Fracture mechanics KW - Bruchmechanik KW - Boundary element method KW - Randelementmethode KW - Fluid KW - Fluide Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-509609 ER - TY - JOUR A1 - Cesca, Simone A1 - Malebran, Carla Valenzuela A1 - Lopez-Comino, Jose Angel A1 - Davis, Timothy A1 - Tassara, Carlos A1 - Oncken, Onno A1 - Dahm, Torsten T1 - The 2014 Juan Fernandez microplate earthquake doublet BT - evidence for large thrust faulting driven by microplate rotation JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - On October 9, 2014, a Mw 7.1-6.7 seismic doublet occurred at the Juan Fernandez microplate, close to the triple junction with Pacific and Nazca plates. The Mw 7.1 earthquake is the largest earthquake ever to have been recorded in the region. Its thrust focal mechanism is also unusual for the region, although the northern part of the microplate is expected to undergo compression. The region is remote and seismological data is limited to a seismic station at similar to 600 km distance on Easter Island and teleseismic observations for the largest events. We use a combination of advanced seismological techniques to overcome the lack of local data and resolve earthquake source parameters for the doublet and its aftershock sequence, being able to reconstruct the chronology of the sequence and the geometry of affected fault segments. Our results depict a complex seismic sequence characterized by the interplay of thrust and strike-slip earthquakes along different structures, including a second, reversed strike slip-thrust seismic doublet in November 2014. Seismicity occurred within the microplate and only in the late part of the sequence migrated northward, towards the microplate boundary. The first largest doublet, whose rupture kinematic is well explained by stress changes imparted by the first subevent on the second one, may have activated unmapped E-W and NE-SW faults or an internal curved pseudofault, attributed to the longterm rotation of the microplate. Few large, thrust earthquakes are observed within the sequence, taking place in the vicinity of mapped compressional ridges. We suggest that compressional stresses in the northern part of the microplate and at its boundary are partially accommodated aseismically. However, the occasional occurrence of large, impulsive thrust earthquakes, with a considerable tsunamigenic potential, poses a relevant hazard for islands in the South Pacific region. KW - Seismic doublet KW - Moment tensor KW - Rupture directivity KW - Juan Fernandez KW - microplate Y1 - 2021 U6 - https://doi.org/10.1016/j.tecto.2021.228720 SN - 0040-1951 SN - 1879-3266 VL - 801 PB - Elsevier CY - Amsterdam ER -