TY - JOUR A1 - Birkhofer, Klaus A1 - Schöning, Ingo A1 - Alt, Fabian A1 - Herold, Nadine A1 - Klarner, Bernhard A1 - Maraun, Mark A1 - Marhan, Sven A1 - Oelmann, Yvonne A1 - Wubet, Tesfaye A1 - Yurkov, Andrey A1 - Begerow, Dominik A1 - Berner, Doreen A1 - Buscot, Francois A1 - Daniel, Rolf A1 - Diekötter, Tim A1 - Ehnes, Roswitha B. A1 - Erdmann, Georgia A1 - Fischer, Christiane A1 - Fösel, Baerbel A1 - Groh, Janine A1 - Gutknecht, Jessica A1 - Kandeler, Ellen A1 - Lang, Christa A1 - Lohaus, Gertrud A1 - Meyer, Annabel A1 - Nacke, Heiko A1 - Näther, Astrid A1 - Overmann, Jörg A1 - Polle, Andrea A1 - Pollierer, Melanie M. A1 - Scheu, Stefan A1 - Schloter, Michael A1 - Schulze, Ernst-Detlef A1 - Schulze, Waltraud X. A1 - Weinert, Jan A1 - Weisser, Wolfgang W. A1 - Wolters, Volkmar A1 - Schrumpf, Marion T1 - General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types JF - PLoS one N2 - Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso-and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types. Y1 - 2012 U6 - https://doi.org/10.1371/journal.pone.0043292 SN - 1932-6203 VL - 7 IS - 8 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Soliveres, Santiago A1 - van der Plas, Fons A1 - Manning, Peter A1 - Prati, Daniel A1 - Gossner, Martin M. A1 - Renner, Swen C. A1 - Alt, Fabian A1 - Arndt, Hartmut A1 - Baumgartner, Vanessa A1 - Binkenstein, Julia A1 - Birkhofer, Klaus A1 - Blaser, Stefan A1 - Blüthgen, Nico A1 - Boch, Steffen A1 - Böhm, Stefan A1 - Börschig, Carmen A1 - Buscot, Francois A1 - Diekötter, Tim A1 - Heinze, Johannes A1 - Hölzel, Norbert A1 - Jung, Kirsten A1 - Klaus, Valentin H. A1 - Kleinebecker, Till A1 - Klemmer, Sandra A1 - Krauss, Jochen A1 - Lange, Markus A1 - Morris, E. Kathryn A1 - Müller, Jörg A1 - Oelmann, Yvonne A1 - Overmann, Jörg A1 - Pasalic, Esther A1 - Rillig, Matthias C. A1 - Schaefer, H. Martin A1 - Schloter, Michael A1 - Schmitt, Barbara A1 - Schöning, Ingo A1 - Schrumpf, Marion A1 - Sikorski, Johannes A1 - Socher, Stephanie A. A1 - Solly, Emily F. A1 - Sonnemann, Ilja A1 - Sorkau, Elisabeth A1 - Steckel, Juliane A1 - Steffan-Dewenter, Ingolf A1 - Stempfhuber, Barbara A1 - Tschapka, Marco A1 - Türke, Manfred A1 - Venter, Paul C. A1 - Weiner, Christiane N. A1 - Weisser, Wolfgang W. A1 - Werner, Michael A1 - Westphal, Catrin A1 - Wilcke, Wolfgang A1 - Wolters, Volkmar A1 - Wubet, Tesfaye A1 - Wurst, Susanne A1 - Fischer, Markus A1 - Allan, Eric T1 - Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality JF - Nature : the international weekly journal of science Y1 - 2016 U6 - https://doi.org/10.1038/nature19092 SN - 0028-0836 SN - 1476-4687 VL - 536 SP - 456 EP - + PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Bastian, Philipp U. A1 - Robel, Nathalie A1 - Schmidt, Peter A1 - Schrumpf, Tim A1 - Günter, Christina A1 - Roddatis, Vladimir A1 - Kumke, Michael U. T1 - Resonance energy transfer to track the motion of lanthanide ions BT - what drives the intermixing in core-shell upconverting nanoparticles? JF - Biosensors : open access journal N2 - The imagination of clearly separated core-shell structures is already outdated by the fact, that the nanoparticle core-shell structures remain in terms of efficiency behind their respective bulk material due to intermixing between core and shell dopant ions. In order to optimize the photoluminescence of core-shell UCNP the intermixing should be as small as possible and therefore, key parameters of this process need to be identified. In the present work the Ln(III) ion migration in the host lattices NaYF4 and NaGdF4 was monitored. These investigations have been performed by laser spectroscopy with help of lanthanide resonance energy transfer (LRET) between Eu(III) as donor and Pr(III) or Nd(III) as acceptor. The LRET is evaluated based on the Forster theory. The findings corroborate the literature and point out the migration of ions in the host lattices. Based on the introduced LRET model, the acceptor concentration in the surrounding of one donor depends clearly on the design of the applied core-shell-shell nanoparticles. In general, thinner intermediate insulating shells lead to higher acceptor concentration, stronger quenching of the Eu(III) donor and subsequently stronger sensitization of the Pr(III) or the Nd(III) acceptors. The choice of the host lattice as well as of the synthesis temperature are parameters to be considered for the intermixing process. KW - upconversion nanoparticles KW - lanthanoid migration KW - lanthanides KW - core-shell KW - energy transfer Y1 - 2021 U6 - https://doi.org/10.3390/bios11120515 SN - 2079-6374 VL - 11 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Soliveres, Santiago A1 - Manning, Peter A1 - Prati, Daniel A1 - Gossner, Martin M. A1 - Alt, Fabian A1 - Arndt, Hartmut A1 - Baumgartner, Vanessa A1 - Binkenstein, Julia A1 - Birkhofer, Klaus A1 - Blaser, Stefan A1 - Bluethgen, Nico A1 - Boch, Steffen A1 - Boehm, Stefan A1 - Boerschig, Carmen A1 - Buscot, Francois A1 - Diekoetter, Tim A1 - Heinze, Johannes A1 - Hoelzel, Norbert A1 - Jung, Kirsten A1 - Klaus, Valentin H. A1 - Klein, Alexandra-Maria A1 - Kleinebecker, Till A1 - Klemmer, Sandra A1 - Krauss, Jochen A1 - Lange, Markus A1 - Morris, E. Kathryn A1 - Mueller, Joerg A1 - Oelmann, Yvonne A1 - Overmann, Jörg A1 - Pasalic, Esther A1 - Renner, Swen C. A1 - Rillig, Matthias C. A1 - Schaefer, H. Martin A1 - Schloter, Michael A1 - Schmitt, Barbara A1 - Schoening, Ingo A1 - Schrumpf, Marion A1 - Sikorski, Johannes A1 - Socher, Stephanie A. A1 - Solly, Emily F. A1 - Sonnemann, Ilja A1 - Sorkau, Elisabeth A1 - Steckel, Juliane A1 - Steffan-Dewenter, Ingolf A1 - Stempfhuber, Barbara A1 - Tschapka, Marco A1 - Tuerke, Manfred A1 - Venter, Paul A1 - Weiner, Christiane N. A1 - Weisser, Wolfgang W. A1 - Werner, Michael A1 - Westphal, Catrin A1 - Wilcke, Wolfgang A1 - Wolters, Volkmar A1 - Wubet, Tesfaye A1 - Wurst, Susanne A1 - Fischer, Markus A1 - Allan, Eric T1 - Locally rare species influence grassland ecosystem multifunctionality JF - Philosophical transactions of the Royal Society of London : B, Biological sciences N2 - Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities. KW - biodiversity KW - common species KW - ecosystem function KW - identity hypothesis KW - land use KW - multitrophic Y1 - 2016 U6 - https://doi.org/10.1098/rstb.2015.0269 SN - 0962-8436 SN - 1471-2970 VL - 371 SP - 3175 EP - 3185 PB - Royal Society CY - London ER -