TY - JOUR A1 - Aarts, Alexander A. A1 - Anderson, Joanna E. A1 - Anderson, Christopher J. A1 - Attridge, Peter R. A1 - Attwood, Angela A1 - Axt, Jordan A1 - Babel, Molly A1 - Bahnik, Stepan A1 - Baranski, Erica A1 - Barnett-Cowan, Michael A1 - Bartmess, Elizabeth A1 - Beer, Jennifer A1 - Bell, Raoul A1 - Bentley, Heather A1 - Beyan, Leah A1 - Binion, Grace A1 - Borsboom, Denny A1 - Bosch, Annick A1 - Bosco, Frank A. A1 - Bowman, Sara D. A1 - Brandt, Mark J. A1 - Braswell, Erin A1 - Brohmer, Hilmar A1 - Brown, Benjamin T. A1 - Brown, Kristina A1 - Bruening, Jovita A1 - Calhoun-Sauls, Ann A1 - Callahan, Shannon P. A1 - Chagnon, Elizabeth A1 - Chandler, Jesse A1 - Chartier, Christopher R. A1 - Cheung, Felix A1 - Christopherson, Cody D. A1 - Cillessen, Linda A1 - Clay, Russ A1 - Cleary, Hayley A1 - Cloud, Mark D. A1 - Cohn, Michael A1 - Cohoon, Johanna A1 - Columbus, Simon A1 - Cordes, Andreas A1 - Costantini, Giulio A1 - Alvarez, Leslie D. Cramblet A1 - Cremata, Ed A1 - Crusius, Jan A1 - DeCoster, Jamie A1 - DeGaetano, Michelle A. A1 - Della Penna, Nicolas A1 - den Bezemer, Bobby A1 - Deserno, Marie K. A1 - Devitt, Olivia A1 - Dewitte, Laura A1 - Dobolyi, David G. A1 - Dodson, Geneva T. A1 - Donnellan, M. Brent A1 - Donohue, Ryan A1 - Dore, Rebecca A. A1 - Dorrough, Angela A1 - Dreber, Anna A1 - Dugas, Michelle A1 - Dunn, Elizabeth W. A1 - Easey, Kayleigh A1 - Eboigbe, Sylvia A1 - Eggleston, Casey A1 - Embley, Jo A1 - Epskamp, Sacha A1 - Errington, Timothy M. A1 - Estel, Vivien A1 - Farach, Frank J. A1 - Feather, Jenelle A1 - Fedor, Anna A1 - Fernandez-Castilla, Belen A1 - Fiedler, Susann A1 - Field, James G. A1 - Fitneva, Stanka A. A1 - Flagan, Taru A1 - Forest, Amanda L. A1 - Forsell, Eskil A1 - Foster, Joshua D. A1 - Frank, Michael C. A1 - Frazier, Rebecca S. A1 - Fuchs, Heather A1 - Gable, Philip A1 - Galak, Jeff A1 - Galliani, Elisa Maria A1 - Gampa, Anup A1 - Garcia, Sara A1 - Gazarian, Douglas A1 - Gilbert, Elizabeth A1 - Giner-Sorolla, Roger A1 - Glöckner, Andreas A1 - Göllner, Lars A1 - Goh, Jin X. A1 - Goldberg, Rebecca A1 - Goodbourn, Patrick T. A1 - Gordon-McKeon, Shauna A1 - Gorges, Bryan A1 - Gorges, Jessie A1 - Goss, Justin A1 - Graham, Jesse A1 - Grange, James A. A1 - Gray, Jeremy A1 - Hartgerink, Chris A1 - Hartshorne, Joshua A1 - Hasselman, Fred A1 - Hayes, Timothy A1 - Heikensten, Emma A1 - Henninger, Felix A1 - Hodsoll, John A1 - Holubar, Taylor A1 - Hoogendoorn, Gea A1 - Humphries, Denise J. A1 - Hung, Cathy O. -Y. A1 - Immelman, Nathali A1 - Irsik, Vanessa C. A1 - Jahn, Georg A1 - Jaekel, Frank A1 - Jekel, Marc A1 - Johannesson, Magnus A1 - Johnson, Larissa G. A1 - Johnson, David J. A1 - Johnson, Kate M. A1 - Johnston, William J. A1 - Jonas, Kai A1 - Joy-Gaba, Jennifer A. A1 - Kappes, Heather Barry A1 - Kelso, Kim A1 - Kidwell, Mallory C. A1 - Kim, Seung Kyung A1 - Kirkhart, Matthew A1 - Kleinberg, Bennett A1 - Knezevic, Goran A1 - Kolorz, Franziska Maria A1 - Kossakowski, Jolanda J. A1 - Krause, Robert Wilhelm A1 - Krijnen, Job A1 - Kuhlmann, Tim A1 - Kunkels, Yoram K. A1 - Kyc, Megan M. A1 - Lai, Calvin K. A1 - Laique, Aamir A1 - Lakens, Daniel A1 - Lane, Kristin A. A1 - Lassetter, Bethany A1 - Lazarevic, Ljiljana B. A1 - LeBel, Etienne P. A1 - Lee, Key Jung A1 - Lee, Minha A1 - Lemm, Kristi A1 - Levitan, Carmel A. A1 - Lewis, Melissa A1 - Lin, Lin A1 - Lin, Stephanie A1 - Lippold, Matthias A1 - Loureiro, Darren A1 - Luteijn, Ilse A1 - Mackinnon, Sean A1 - Mainard, Heather N. A1 - Marigold, Denise C. A1 - Martin, Daniel P. A1 - Martinez, Tylar A1 - Masicampo, E. J. A1 - Matacotta, Josh A1 - Mathur, Maya A1 - May, Michael A1 - Mechin, Nicole A1 - Mehta, Pranjal A1 - Meixner, Johannes A1 - Melinger, Alissa A1 - Miller, Jeremy K. A1 - Miller, Mallorie A1 - Moore, Katherine A1 - Möschl, Marcus A1 - Motyl, Matt A1 - Müller, Stephanie M. A1 - Munafo, Marcus A1 - Neijenhuijs, Koen I. A1 - Nervi, Taylor A1 - Nicolas, Gandalf A1 - Nilsonne, Gustav A1 - Nosek, Brian A. A1 - Nuijten, Michele B. A1 - Olsson, Catherine A1 - Osborne, Colleen A1 - Ostkamp, Lutz A1 - Pavel, Misha A1 - Penton-Voak, Ian S. A1 - Perna, Olivia A1 - Pernet, Cyril A1 - Perugini, Marco A1 - Pipitone, R. Nathan A1 - Pitts, Michael A1 - Plessow, Franziska A1 - Prenoveau, Jason M. A1 - Rahal, Rima-Maria A1 - Ratliff, Kate A. A1 - Reinhard, David A1 - Renkewitz, Frank A1 - Ricker, Ashley A. A1 - Rigney, Anastasia A1 - Rivers, Andrew M. A1 - Roebke, Mark A1 - Rutchick, Abraham M. A1 - Ryan, Robert S. A1 - Sahin, Onur A1 - Saide, Anondah A1 - Sandstrom, Gillian M. A1 - Santos, David A1 - Saxe, Rebecca A1 - Schlegelmilch, Rene A1 - Schmidt, Kathleen A1 - Scholz, Sabine A1 - Seibel, Larissa A1 - Selterman, Dylan Faulkner A1 - Shaki, Samuel A1 - Simpson, William B. A1 - Sinclair, H. Colleen A1 - Skorinko, Jeanine L. M. A1 - Slowik, Agnieszka A1 - Snyder, Joel S. A1 - Soderberg, Courtney A1 - Sonnleitner, Carina A1 - Spencer, Nick A1 - Spies, Jeffrey R. A1 - Steegen, Sara A1 - Stieger, Stefan A1 - Strohminger, Nina A1 - Sullivan, Gavin B. A1 - Talhelm, Thomas A1 - Tapia, Megan A1 - te Dorsthorst, Anniek A1 - Thomae, Manuela A1 - Thomas, Sarah L. A1 - Tio, Pia A1 - Traets, Frits A1 - Tsang, Steve A1 - Tuerlinckx, Francis A1 - Turchan, Paul A1 - Valasek, Milan A1 - Van Aert, Robbie A1 - van Assen, Marcel A1 - van Bork, Riet A1 - van de Ven, Mathijs A1 - van den Bergh, Don A1 - van der Hulst, Marije A1 - van Dooren, Roel A1 - van Doorn, Johnny A1 - van Renswoude, Daan R. A1 - van Rijn, Hedderik A1 - Vanpaemel, Wolf A1 - Echeverria, Alejandro Vasquez A1 - Vazquez, Melissa A1 - Velez, Natalia A1 - Vermue, Marieke A1 - Verschoor, Mark A1 - Vianello, Michelangelo A1 - Voracek, Martin A1 - Vuu, Gina A1 - Wagenmakers, Eric-Jan A1 - Weerdmeester, Joanneke A1 - Welsh, Ashlee A1 - Westgate, Erin C. A1 - Wissink, Joeri A1 - Wood, Michael A1 - Woods, Andy A1 - Wright, Emily A1 - Wu, Sining A1 - Zeelenberg, Marcel A1 - Zuni, Kellylynn T1 - Estimating the reproducibility of psychological science JF - Science N2 - Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47% of original effect sizes were in the 95% confidence interval of the replication effect size; 39% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams. Y1 - 2015 U6 - https://doi.org/10.1126/science.aac4716 SN - 1095-9203 SN - 0036-8075 VL - 349 IS - 6251 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Weiss, Jonathan R. A1 - Walters, Richard J. A1 - Morishita, Yu A1 - Wright, Tim J. A1 - Lazecky, Milan A1 - Wang, Hua A1 - Hussain, Ekbal A1 - Hooper, Andrew J. A1 - Elliott, John R. A1 - Rollins, Chris A1 - Yu, Chen A1 - Gonzalez, Pablo J. A1 - Spaans, Karsten A1 - Li, Zhenhong A1 - Parsons, Barry T1 - High-resolution surface velocities and strain for Anatolia from Sentinel-1 InSAR and GNSS data JF - Geophysical research letters N2 - Measurements of present-day surface deformation are essential for the assessment of long-term seismic hazard. The European Space Agency's Sentinel-1 satellites enable global, high-resolution observation of crustal motion from Interferometric Synthetic Aperture Radar (InSAR). We have developed automated InSAR processing systems that exploit the first similar to 5 years of Sentinel-1 data to measure surface motions for the similar to 800,000-km(2) Anatolian region. Our new 3-D velocity and strain rate fields illuminate deformation patterns dominated by westward motion of Anatolia relative to Eurasia, localized strain accumulation along the North and East Anatolian Faults, and rapid vertical signals associated with anthropogenic activities and to a lesser extent extension across the grabens of western Anatolia. We show that automatically processed Sentinel-1 InSAR data can characterize details of the velocity and strain rate fields with high resolution and accuracy over large regions. These results are important for assessing the relationship between strain accumulation and release in earthquakes.
Plain Language Summary Satellite-based measurements of small rates of motion of the Earth's surface made at high spatial resolutions and over large areas are important for many geophysical applications including improving earthquake hazard models. We take advantage of recent advances in geodetic techniques in order to measure surface velocities and tectonic strain accumulation across the Anatolia region, including the highly seismogenic and often deadly North Anatolian Fault. We show that by combining Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) data with Global Navigation Satellite System (GNSS) measurements we can enhance our view of surface deformation associated with active tectonics, the earthquake cycle, and anthropogenic processes. Y1 - 2020 U6 - https://doi.org/10.1029/2020GL087376 SN - 0094-8276 SN - 1944-8007 VL - 47 IS - 17 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Morishita, Yu A1 - Lazecky, Milan A1 - Wright, Tim J. A1 - Weiss, Jonathan R. A1 - Elliott, John R. A1 - Hooper, Andy T1 - LiCSBAS BT - An Open-Source InSAR Time Series Analysis Package Integrated with the LiCSAR Automated Sentinel-1 InSAR Processor T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - For the past five years, the 2-satellite Sentinel-1 constellation has provided abundant and useful Synthetic Aperture Radar (SAR) data, which have the potential to reveal global ground surface deformation at high spatial and temporal resolutions. However, for most users, fully exploiting the large amount of associated data is challenging, especially over wide areas. To help address this challenge, we have developed LiCSBAS, an open-source SAR interferometry (InSAR) time series analysis package that integrates with the automated Sentinel-1 InSAR processor (LiCSAR). LiCSBAS utilizes freely available LiCSAR products, and users can save processing time and disk space while obtaining the results of InSAR time series analysis. In the LiCSBAS processing scheme, interferograms with many unwrapping errors are automatically identified by loop closure and removed. Reliable time series and velocities are derived with the aid of masking using several noise indices. The easy implementation of atmospheric corrections to reduce noise is achieved with the Generic Atmospheric Correction Online Service for InSAR (GACOS). Using case studies in southern Tohoku and the Echigo Plain, Japan, we demonstrate that LiCSBAS applied to LiCSAR products can detect both large-scale (>100 km) and localized (~km) relative displacements with an accuracy of <1 cm/epoch and ~2 mm/yr. We detect displacements with different temporal characteristics, including linear, periodic, and episodic, in Niigata, Ojiya, and Sanjo City, respectively. LiCSBAS and LiCSAR products facilitate greater exploitation of globally available and abundant SAR datasets and enhance their applications for scientific research and societal benefit. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1078 KW - InSAR KW - Sentinel-1 KW - time series analysis KW - deformation monitoring KW - tectonics KW - subsidence KW - automatic processing KW - global Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472431 SN - 1866-8372 IS - 1078 ER - TY - JOUR A1 - Weiss, Jonathan R. A1 - Qiu, Qiang A1 - Barbot, Sylvain A1 - Wright, Tim J. A1 - Foster, James H. A1 - Saunders, Alexander A1 - Brooks, Benjamin A. A1 - Bevis, Michael A1 - Kendrick, Eric A1 - Ericksen, Todd L. A1 - Avery, Jonathan A1 - Smalley, Robert A1 - Cimbaro, Sergio R. A1 - Lenzano, Luis Eduardo A1 - Baron, Jorge A1 - Carlos Baez, Juan A1 - Echalar, Arturo T1 - Illuminating subduction zone rheological properties in the wake of a giant earthquake JF - Science Advances N2 - Deformation associated with plate convergence at subduction zones is accommodated by a complex system involving fault slip and viscoelastic flow. These processes have proven difficult to disentangle. The 2010 M-w 8.8 Maule earthquake occurred close to the Chilean coast within a dense network of continuously recording Global Positioning System stations, which provide a comprehensive history of surface strain. We use these data to assemble a detailed picture of a structurally controlled megathrust fault frictional patchwork and the three-dimensional rheological and time-dependent viscosity structure of the lower crust and upper mantle, all of which control the relative importance of afterslip and viscoelastic relaxation during postseismic deformation. These results enhance our understanding of subduction dynamics including the interplay of localized and distributed deformation during the subduction zone earthquake cycle. Y1 - 2019 U6 - https://doi.org/10.1126/sciadv.aax6720 SN - 2375-2548 VL - 5 IS - 12 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Morishita, Yu A1 - Lazecky, Milan A1 - Wright, Tim J. A1 - Weiss, Jonathan R. A1 - Elliott, John R. A1 - Hooper, Andy T1 - LiCSBAS BT - an open-source InSAR time series analysis package integrated with the LiCSAR automated Sentinel-1 InSAR processor JF - Remote sensing N2 - For the past five years, the 2-satellite Sentinel-1 constellation has provided abundant and useful Synthetic Aperture Radar (SAR) data, which have the potential to reveal global ground surface deformation at high spatial and temporal resolutions. However, for most users, fully exploiting the large amount of associated data is challenging, especially over wide areas. To help address this challenge, we have developed LiCSBAS, an open-source SAR interferometry (InSAR) time series analysis package that integrates with the automated Sentinel-1 InSAR processor (LiCSAR). LiCSBAS utilizes freely available LiCSAR products, and users can save processing time and disk space while obtaining the results of InSAR time series analysis. In the LiCSBAS processing scheme, interferograms with many unwrapping errors are automatically identified by loop closure and removed. Reliable time series and velocities are derived with the aid of masking using several noise indices. The easy implementation of atmospheric corrections to reduce noise is achieved with the Generic Atmospheric Correction Online Service for InSAR (GACOS). Using case studies in southern Tohoku and the Echigo Plain, Japan, we demonstrate that LiCSBAS applied to LiCSAR products can detect both large-scale (>100 km) and localized (similar to km) relative displacements with an accuracy of <1 cm/epoch and similar to 2 mm/yr. We detect displacements with different temporal characteristics, including linear, periodic, and episodic, in Niigata, Ojiya, and Sanjo City, respectively. LiCSBAS and LiCSAR products facilitate greater exploitation of globally available and abundant SAR datasets and enhance their applications for scientific research and societal benefit. KW - InSAR KW - Sentinel-1 KW - time series analysis KW - deformation monitoring KW - tectonics KW - subsidence KW - automatic processing KW - global Y1 - 2020 U6 - https://doi.org/10.3390/rs12030424 SN - 2072-4292 VL - 12 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Ou, Qi A1 - Daout, Simon A1 - Weiss, Jonathan R. A1 - Shen, Lin A1 - Lazecky, Milan A1 - Wright, Tim J. A1 - Parsons, Barry E. T1 - Large-Scale interseismic strain mapping of the NE Tibetan Plateau from Sentinel-1 Interferometry JF - Journal of geophysical research : Solid earth N2 - The launches of the Sentinel-1 synthetic aperture radar satellites in 2014 and 2016 started a new era of high-resolution velocity and strain rate mapping for the continents. However, multiple challenges exist in tying independently processed velocity data sets to a common reference frame and producing high-resolution strain rate fields. We analyze Sentinel-1 data acquired between 2014 and 2019 over the northeast Tibetan Plateau, and develop new methods to derive east and vertical velocities with similar to 100 m resolution and similar to 1 mm/yr accuracy across an area of 440,000 km(2). By implementing a new method of combining horizontal gradients of filtered east and interpolated north velocities, we derive the first similar to 1 km resolution strain rate field for this tectonically active region. The strain rate fields show concentrated shear strain along the Haiyuan and East Kunlun Faults, and local contractional strain on fault junctions, within the Qilianshan thrusts, and around the Longyangxia Reservoir. The Laohushan-Jingtai creeping section of the Haiyuan Fault is highlighted in our data set by extremely rapid strain rates. Strain across unknown portions of the Haiyuan Fault system, including shear on the eastern extension of the Dabanshan Fault and contraction at the western flank of the Quwushan, highlight unmapped tectonic structures. In addition to the uplift across most of the lowlands, the vertical velocities also contain climatic, hydrological or anthropogenic-related deformation signals. We demonstrate the enhanced view of large-scale active tectonic processes provided by high-resolution velocities and strain rates derived from Sentinel-1 data and highlight associated wide-ranging research applications. KW - Sentinel-1 InSAR KW - interseismic strain rate KW - creep and unmapped faults; KW - hydrological uplift and subsidence KW - tectonic geodesy KW - surface velocity KW - mapping Y1 - 2022 U6 - https://doi.org/10.1029/2022JB024176 SN - 2169-9313 SN - 2169-9356 VL - 127 IS - 6 PB - American Geophysical Union CY - Washington ER -