TY - JOUR A1 - Lischke, Betty A1 - Mehner, Thomas A1 - Hilt, Sabine A1 - Attermeyer, Katrin A1 - Brauns, Mario A1 - Brothers, Soren M. A1 - Grossart, Hans-Peter A1 - Koehler, Jan A1 - Scharnweber, Inga Kristin A1 - Gaedke, Ursula T1 - Benthic carbon is inefficiently transferred in the food webs of two eutrophic shallow lakes JF - Freshwater biology N2 - The sum of benthic autotrophic and bacterial production often exceeds the sum of pelagic autotrophic and bacterial production, and hence may contribute substantially to whole-lake carbon fluxes, especially in shallow lakes. Furthermore, both benthic and pelagic autotrophic and bacterial production are highly edible and of sufficient nutritional quality for animal consumers. We thus hypothesised that pelagic and benthic transfer efficiencies (ratios of production at adjacent trophic levels) in shallow lakes should be similar. We performed whole ecosystem studies in two shallow lakes (3.5ha, mean depth 2m), one with and one without submerged macrophytes, and quantified pelagic and benthic biomass, production and transfer efficiencies for bacteria, phytoplankton, epipelon, epiphyton, macrophytes, zooplankton, macrozoobenthos and fish. We expected higher transfer efficiencies in the lake with macrophytes, because these provide shelter and food for macrozoobenthos and may thus enable a more efficient conversion of basal production to consumer production. In both lakes, the majority of the whole-lake autotrophic and bacterial production was provided by benthic organisms, but whole-lake primary consumer production mostly relied on pelagic autotrophic and bacterial production. Consequently, transfer efficiency of benthic autotrophic and bacterial production to macrozoobenthos production was an order of magnitude lower than the transfer efficiency of pelagic autotrophic and bacterial production to rotifer and crustacean production. Between-lake differences in transfer efficiencies were minor. We discuss several aspects potentially causing the unexpectedly low benthic transfer efficiencies, such as the food quality of producers, pelagic-benthic links, oxygen concentrations in the deeper lake areas and additional unaccounted consumer production by pelagic and benthic protozoa and meiobenthos at intermediate or top trophic levels. None of these processes convincingly explain the large differences between benthic and pelagic transfer efficiencies. Our data indicate that shallow eutrophic lakes, even with a major share of autotrophic and bacterial production in the benthic zone, can function as pelagic systems with respect to primary consumer production. We suggest that the benthic autotrophic production was mostly transferred to benthic bacterial production, which remained in the sediments, potentially cycling internally in a similar way to what has previously been described for the microbial loop in pelagic habitats. Understanding the energetics of whole-lake food webs, including the fate of the substantial benthic bacterial production, which is either mineralised at the sediment surface or permanently buried, has important implications for regional and global carbon cycling. KW - bacterial production KW - benthic food chain KW - pelagic food chain KW - quantitative food webs KW - trophic transfer efficiency Y1 - 2017 U6 - https://doi.org/10.1111/fwb.12979 SN - 0046-5070 SN - 1365-2427 VL - 62 SP - 1693 EP - 1706 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Brothers, Soren M. A1 - Hilt, Sabine A1 - Attermeyer, Katrin A1 - Grossart, Hans-Peter A1 - Kosten, Sarian A1 - Lischke, Betty A1 - Mehner, Thomas A1 - Meyer, Nils A1 - Scharnweber, Inga Kristin A1 - Köhler, Jan T1 - A regime shift from macrophyte to phytoplankton dominance enhances carbon burial in a shallow, eutrophic lake JF - Ecosphere : the magazine of the International Ecology University N2 - Ecological regime shifts and carbon cycling in aquatic systems have both been subject to increasing attention in recent years, yet the direct connection between these topics has remained poorly understood. A four-fold increase in sedimentation rates was observed within the past 50 years in a shallow eutrophic lake with no surface in-or outflows. This change coincided with an ecological regime shift involving the complete loss of submerged macrophytes, leading to a more turbid, phytoplankton-dominated state. To determine whether the increase in carbon (C) burial resulted from a comprehensive transformation of C cycling pathways in parallel to this regime shift, we compared the annual C balances (mass balance and ecosystem budget) of this turbid lake to a similar nearby lake with submerged macrophytes, a higher transparency, and similar nutrient concentrations. C balances indicated that roughly 80% of the C input was permanently buried in the turbid lake sediments, compared to 40% in the clearer macrophyte-dominated lake. This was due to a higher measured C burial efficiency in the turbid lake, which could be explained by lower benthic C mineralization rates. These lower mineralization rates were associated with a decrease in benthic oxygen availability coinciding with the loss of submerged macrophytes. In contrast to previous assumptions that a regime shift to phytoplankton dominance decreases lake heterotrophy by boosting whole-lake primary production, our results suggest that an equivalent net metabolic shift may also result from lower C mineralization rates in a shallow, turbid lake. The widespread occurrence of such shifts may thus fundamentally alter the role of shallow lakes in the global C cycle, away from channeling terrestrial C to the atmosphere and towards burying an increasing amount of C. KW - calcite precipitation KW - CO2 emissions KW - global carbon cycle KW - metabolism KW - regime shift KW - sedimentation KW - submerged macrophytes KW - temperate zone KW - trophic status Y1 - 2013 U6 - https://doi.org/10.1890/ES13-00247.1 SN - 2150-8925 VL - 4 IS - 11 PB - Wiley CY - Washington ER -