TY - JOUR A1 - Bommer, Julian J. A1 - Coppersmith, Kevin J. A1 - Coppersmith, Ryan T. A1 - Hanson, Kathryn L. A1 - Mangongolo, Azangi A1 - Neveling, Johann A1 - Rathje, Ellen M. A1 - Rodriguez-Marek, Adrian A1 - Scherbaum, Frank A1 - Shelembe, Refilwe A1 - Stafford, Peter J. A1 - Strasser, Fleur O. T1 - A SSHAC Level 3 Probabilistic Seismic Hazard Analysis for a New-Build Nuclear Site in South Africa JF - Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute N2 - A probabilistic seismic hazard analysis has been conducted for a potential nuclear power plant site on the coast of South Africa, a country of low-to-moderate seismicity. The hazard study was conducted as a SSHAC Level 3 process, the first application of this approach outside North America. Extensive geological investigations identified five fault sources with a non-zero probability of being seismogenic. Five area sources were defined for distributed seismicity, the least active being the host zone for which the low recurrence rates for earthquakes were substantiated through investigations of historical seismicity. Empirical ground-motion prediction equations were adjusted to a horizon within the bedrock at the site using kappa values inferred from weak-motion analyses. These adjusted models were then scaled to create new equations capturing the range of epistemic uncertainty in this region with no strong motion recordings. Surface motions were obtained by convolving the bedrock motions with site amplification functions calculated using measured shear-wave velocity profiles. Y1 - 2015 U6 - https://doi.org/10.1193/060913EQS145M SN - 8755-2930 SN - 1944-8201 VL - 31 IS - 2 SP - 661 EP - 698 PB - Earthquake Engineering Research Institute CY - Oakland ER - TY - JOUR A1 - Guiet, Amandine A1 - Goebel, Caren A1 - Klingan, Katharina A1 - Lublow, Michael A1 - Reier, Tobias A1 - Vainio, Ulla A1 - Kraehnert, Ralph A1 - Schlaad, Helmut A1 - Strasser, Peter A1 - Zaharieva, Ivelina A1 - Dau, Holger A1 - Driess, Matthias A1 - Polte, Joerg A1 - Fischer, Anna T1 - Hydrophobic Nanoreactor Soft-Templating: A Supramolecular Approach to Yolk@Shell Materials JF - Advanced functional materials N2 - Due to their unique morphology-related properties, yolk@shell materials are promising materials for catalysis, drug delivery, energy conversion, and storage. Despite their proven potential, large-scale applications are however limited due to demanding synthesis protocols. Overcoming these limitations, a simple soft-templated approach for the one-pot synthesis of yolk@shell nanocomposites and in particular of multicore metal nanoparticle@metal oxide nanostructures (M-NP@MOx) is introduced. The approach here, as demonstrated for Au-NP@ITOTR (ITOTR standing for tin-rich ITO), relies on polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) inverse micelles as two compartment nanoreactor templates. While the hydrophilic P4VP core incorporates the hydrophilic metal precursor, the hydrophobic PS corona takes up the hydrophobic metal oxide precursor. As a result, interfacial reactions between the precursors can take place, leading to the formation of yolk@shell structures in solution. Once calcined these micelles yield Au-NP@ITOTR nanostructures, composed of multiple 6 nm sized Au NPs strongly anchored onto the inner surface of porous 35 nm sized ITOTR hollow spheres. Although of multicore nature, only limited sintering of the metal nanoparticles is observed at high temperatures (700 degrees C). In addition, the as-synthesized yolk@shell structures exhibit high and stable activity toward CO electrooxidation, thus demonstrating the applicability of our approach for the design of functional yolk@shell nanocatalysts. KW - inverse micelles KW - nanoreactor KW - polystyrene-block-poly(4-vinylpyridine) KW - soft-templating KW - tin-rich ITO KW - yolk@shell materials Y1 - 2015 U6 - https://doi.org/10.1002/adfm.201502388 SN - 1616-301X SN - 1616-3028 VL - 25 IS - 39 SP - 6228 EP - 6240 PB - Wiley-VCH CY - Weinheim ER -