TY - JOUR A1 - Marzetz, Vanessa A1 - Spijkerman, Elly A1 - Striebel, Maren A1 - Wacker, Alexander T1 - Phytoplankton community responses to interactions between light intensity, light variations, and phosphorus supply JF - Frontiers in Environmental Science N2 - In a changing world, phytoplankton communities face a large variety of challenges including altered light regimes. These alterations are caused by more pronounced stratification due to rising temperatures, enhanced eutrophication, and browning of lakes. Community responses toward these effects can emerge as alterations in physiology, biomass, biochemical composition, or diversity. In this study, we addressed the combined effects of changes in light and nutrient conditions on community responses. In particular, we investigated how light intensity and variability under two nutrient conditions influence (1) fast responses such as adjustments in photosynthesis, (2) intermediate responses such as pigment adaptation and (3) slow responses such as changes in community biomass and species composition. Therefore, we exposed communities consisting of five phytoplankton species belonging to different taxonomic groups to two constant and two variable light intensity treatments combined with two levels of phosphorus supply. The tested phytoplankton communities exhibited increased fast reactions of photosynthetic processes to light variability and light intensity. The adjustment of their light harvesting mechanisms via community pigment composition was not affected by light intensity, variability, or nutrient supply. However, pigment specific effects of light intensity, light variability, and nutrient supply on the proportion of the respective pigments were detected. Biomass was positively affected by higher light intensity and nutrient concentrations while the direction of the effect of variability was modulated by light intensity. Light variability had a negative impact on biomass at low, but a positive impact at high light intensity. The effects on community composition were species specific. Generally, the proportion of green algae was higher under high light intensity, whereas the cyanobacterium performed better under low light conditions. In addition to that, the diatom and the cryptophyte performed better with high nutrient supply while the green algae as well as the cyanobacterium performed better at low nutrient conditions. This shows that light intensity, light variability, and nutrient supply interactively affect communities. Furthermore, the responses are highly species and pigment specific, thus to clarify the effects of climate change a deeper understanding of the effects of light variability and species interactions within communities is important. KW - phytoplankton communities KW - light variability KW - photosynthetic rate KW - climate change KW - resource competition KW - light intensity (irradiance) KW - pigment composition KW - nutrient supply Y1 - 2020 U6 - https://doi.org/10.3389/fenvs.2020.539733 SN - 2296-665X VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Spijkerman, Elly A1 - Lukas, Marcus A1 - Wacker, Alexander T1 - Ecophysiological strategies for growth under varying light and organic carbon supply in two species of green microalgae differing in their motility JF - Phytochemistry : an international journal of plant biochemistry N2 - Mixing events in stratified lakes result in microalgae being exposed to varying conditions in light and organic carbon concentrations. Stratified lakes consist of an upper illuminated strata and a lower, darker strata where organic carbon accumulates. Therefore, in this contribution we explore the importance of dissolved organic carbon for growth under various light intensities by measuring some ecophysiological adaptations in two green microalgae. We compared the non-motile Chlorella vulgaris with the flagellated Chlamydomonas acidophila under auto-, mixo-, and heterotrophic growth conditions. In both algae the maximum photosynthetic and growth rates were highest under mixotrophy, and both algae appeared inhibited in their phosphorus acquisition under heterotrophy. Heterotrophic conditions provoked the largest differences as C. vulgaris produced chlorophyll a in darkness and grew as well as in autotrophic conditions, whereas Chl. acidophila bleached and could not grow heterotrophically. Although the fatty acid composition of both phytoplankton species differed, both species reacted in a similar way to changes in their growth conditions, mainly by a decrease of C18:3n-3 and an increase of C18:1n-9 from auto- to heterotrophic conditions. The two contrasting responses within the group of green microalgae suggest that dissolved organic carbon has a high deterministic potential to explain the survival and behaviour of green algae in the deeper strata of lakes. KW - Chlamydomonas acidophila KW - Chlorella vulgaris KW - Chlorophyceae KW - Ecophysiology on freshwater phytoplankton KW - Glucose KW - Mixotrophy KW - Osmotrophy KW - Heterotrophy KW - Photosynthesis KW - Fatty acids Y1 - 2017 U6 - https://doi.org/10.1016/j.phytochem.2017.08.018 SN - 0031-9422 SN - 1873-3700 VL - 144 SP - 43 EP - 51 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Spijkerman, Elly A1 - de Castro, Francisco A1 - Gaedke, Ursula T1 - Independent Colimitation for Carbon Dioxide and Inorganic Phosphorus JF - PLoS one N2 - Simultaneous limitation of plant growth by two or more nutrients is increasingly acknowledged as a common phenomenon in nature, but its cellular mechanisms are far from understood. We investigated the uptake kinetics of CO(2) and phosphorus of the algae Chlamydomonas acidophila in response to growth at limiting conditions of CO(2) and phosphorus. In addition, we fitted the data to four different Monod-type models: one assuming Liebigs Law of the minimum, one assuming that the affinity for the uptake of one nutrient is not influenced by the supply of the other (independent colimitation) and two where the uptake affinity for one nutrient depends on the supply of the other (dependent colimitation). In addition we asked whether the physiological response under colimitation differs from that under single nutrient limitation. We found no negative correlation between the affinities for uptake of the two nutrients, thereby rejecting a dependent colimitation. Kinetic data were supported by a better model fit assuming independent uptake of colimiting nutrients than when assuming Liebigs Law of the minimum or a dependent colimitation. Results show that cell nutrient homeostasis regulated nutrient acquisition which resulted in a trade-off in the maximum uptake rates of CO(2) and phosphorus, possibly driven by space limitation on the cell membrane for porters for the different nutrients. Hence, the response to colimitation deviated from that to a single nutrient limitation. In conclusion, responses to single nutrient limitation cannot be extrapolated to situations where multiple nutrients are limiting, which calls for colimitation experiments and models to properly predict growth responses to a changing natural environment. These deviations from single nutrient limitation response under colimiting conditions and independent colimitation may also hold for other nutrients in algae and in higher plants. Y1 - 2011 U6 - https://doi.org/10.1371/journal.pone.0028219 SN - 1932-6203 VL - 6 IS - 12 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Lachmann, Sabrina C. A1 - Maberly, Stephen C. A1 - Spijkerman, Elly T1 - Species-specific influence of P-i-status on inorganic carbon acquisition in microalgae (Chlorophyceae) JF - Botany N2 - Inorganic phosphorus (P-i) is often the primary limiting nutrient in freshwater ecosystems. Since P(i-)limitation affects energy transduction, and inorganic carbon (C-i) acquisition can be energy demanding, C(i-)acquisition strategies were compared in four species of green algae grown under P-i-replete and P-i-limited conditions predominantly at low and partly at high CO2. Although P-i-limitation was evident by the 10-fold higher cellular C:P ratio and enhanced phosphatase activity, it only decreased C-i-acquisition to a small extent. Nonetheless, the effects of Pi-limitation on both CO2 and HCO3- acquisition were demonstrated. Decreased CO2 acquisition under conditions of Pi limitation was mainly visible in the maximum uptake rate (V-max) and, for the neutrophile Scenedesmus vacuolatus, in the affinity for CO2 acquisition. Discrimination against C-13 was higher under P-i-limited, high CO2 conditions, compared with P-i-replete, highCO(2) conditions, in Chlamydomonas acidophila and S. vacuolatus. In the pH-drift experiments, HCO3- acquisition was reduced in P-i-limited C. reinhardtii. In general, energy demanding bicarbonate uptake was indicated by the less strong discrimination against (13)Cunder lowCO(2) conditions in the neutrophiles (HCO3- users), separating them from the acidophilic or acidotolerant species (CO2 users). The high variability of the influence of Pi supply among different green algal species is linked to their species-specific C(i-)acquisition strategies. KW - CCM KW - Chlamydomonas KW - inorganic carbon uptake kinetics KW - inorganic phosphorus limitation KW - stable carbon isotope discrimination Y1 - 2017 U6 - https://doi.org/10.1139/cjb-2017-0082 SN - 1916-2790 SN - 1916-2804 VL - 95 SP - 943 EP - 952 PB - NRC Research Press CY - Ottawa ER - TY - JOUR A1 - Grzesiuk, Malgorzata A1 - Spijkerman, Elly A1 - Lachmann, Sabrina C. A1 - Wacker, Alexander T1 - Environmental concentrations of pharmaceuticals directly affect phytoplankton and effects propagate through trophic interactions JF - Ecotoxicology and Environmental Safety N2 - Pharmaceuticals are found in freshwater ecosystems where even low concentrations in the range of ng L−1 may affect aquatic organisms. In the current study, we investigated the effects of chronic exposure to three pharmaceuticals on two microalgae, a potential modulation of the effects by additional inorganic phosphorus (Pi) limitation, and a potential propagation of the pharmaceuticals’ effect across a trophic interaction. The latter considers that pharmaceuticals are bioaccumulated by algae, potentially metabolized into more (or less) toxic derivates and consequently consumed by zooplankton. We cultured Acutodesmus obliquus and Nannochloropsis limnetica in Pi-replete and Pi-limited medium contaminated with one of three commonly human used pharmaceuticals: fluoxetine, ibuprofen, and propranolol. Secondly, we tested to what extent first level consumers (Daphnia magna) were affected when fed with pharmaceutical-grown algae. Chronic exposure, covering 30 generations, led to (i) decreased cell numbers of A. obliquus in the presence of fluoxetine (under Pi-replete conditions) (ii) increased carotenoid to chlorophyll ratios in N. limnetica (under Pi-limited conditions), and (iii) increased photosynthetic yields in A. obliquus (in both Pi-conditions). In addition, ibuprofen affected both algae and their consumer: Feeding ibuprofen-contaminated algae to Pi-stressed D. magna improved their survival. We demonstrate, that even very low concentrations of pharmaceuticals present in freshwater ecosystems can significantly affect aquatic organisms when chronically exposed. Our study indicates that pharmaceutical effects can cross trophic levels and travel up the food chain. KW - Freshwater microalgae KW - Cellular phosphorus KW - Daphnia KW - Human used-drugs KW - Chronic exposure KW - Environmental risk KW - Fatty acids Y1 - 2018 U6 - https://doi.org/10.1016/j.ecoenv.2018.03.019 SN - 0147-6513 SN - 1090-2414 VL - 156 SP - 271 EP - 278 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Spijkerman, Elly A1 - Behrend, Hella A1 - Fach, Bettina A1 - Gaedke, Ursula T1 - Decreased phosphorus incorporation explains the negative effect of high iron concentrations in the green microalga Chlamydomonas acidophila JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - The green microalga Chlamydomonas acidophila is an important primary producer in very acidic lakes (pH 2.0-3.5), characterized by high concentrations of ferric iron (up to 1 g total Fe L-1) and low rates of primary production. It was previously suggested that these high iron concentrations result in high iron accumulation and inhibit photosynthesis in C. acidophila. To test this, the alga was grown in sterilized lake water and in medium with varying total iron concentrations under limiting and sufficient inorganic phosphorus (Pi) supply, because Pi is an important growth limiting nutrient in acidic waters. Photosynthesis and growth of C. acidophila as measured over 5 days were largely unaffected by high total iron concentrations and only decreased if free ionic Fe3+ concentrations exceeded 100 mg Fe3+ L-1. Although C. acidophila was relatively rich in iron (up to 5 mmol Fe: mol C), we found no evidence of iron toxicity. In contrast, a concentration of 260 mg total Fe L-1 (i.e. 15 mg free ionic Fe3+ L-1), which is common in many acidic lakes, reduced Pi-incorporation by 50% and will result in Pi-limited photosynthesis. The resulting Pi-limitation present at high iron and Pi concentrations was illustrated by elevated maximum Pi-uptake rates. No direct toxic effects of high iron were found, but unfavourable chemical Pi-speciation reduced growth of the acidophile alga. KW - Chlamydomonas KW - Ecotoxicology KW - Extreme environment KW - Iron toxicity KW - Phosphate limitation KW - Phytoplankton Y1 - 2018 U6 - https://doi.org/10.1016/j.scitotenv.2018.01.188 SN - 0048-9697 SN - 1879-1026 VL - 626 SP - 1342 EP - 1349 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Gerloff-Elias, Antje A1 - Spijkerman, Elly A1 - Proschold, T. T1 - Effect of external pH on the growth, photosynthesis and photosynthetic electron transport of Chlamydomonas acidophila Negoro, isolated from an extremely acidic lake (pH 2.6) N2 - In extremely acidic lakes, low primary production rates have been measured. We assumed that proton stress might explain these observations and therefore investigated the photosynthetic behaviour of a Chlamydomonas species, a main primary producer in acidic lakes, over a range of pH values. Identified as C. acidophila using small subunit rDNA analysis, this species is identical to other isolates from acidic environments in Europe and South America, suggesting a worldwide distribution. Laboratory experiments with C. acidophila, revealed a broad pH-tolerance for growth and photosynthesis, the lower pH limit lying at pH 1.5 and the upper limit at pH 7. Growth rates at optimum pH conditions (pH 3 and 5) were equal to those of the mesophilic Chlamydomonas reinhardtii. In contrast, photosynthetic rates were significantly higher, suggesting that higher photosynthetic rates compensated for higher dark respiration rates, as confirmed experimentally. Electron transport capacities of PSI and PSII, P700(+) re-reduction times and measurements of PSII fluorescence revealed the induction of alternative electron transport mechanisms, such as chlororespiration, state transitions and cyclic electron transport, only at suboptimal pH values (pH 1.5; 4 and 6-7). The results indicate, that C. acidophila is well adapted to low pH and that the relatively low primary production rates are not a result of pH stress Y1 - 2005 SN - 0140-7791 ER - TY - JOUR A1 - Gerloff-Elias, Antje A1 - Barua, Deepak A1 - Mölich, Andreas A1 - Spijkerman, Elly T1 - Temperature- and pH-dependent accumulation of heat-shock proteins in the acidophilic green alga Chlamydomonas acidophila N2 - Chlamydomonas acidophila, a unicellular green alga, is a dominant phytoplankton species in acidic water bodies, facing severe environmental conditions such as low pH and high heavy metal concentrations. We examined the pH-, and temperature-dependent accumulation of heat-shock proteins in this alga to determine whether heat-shock proteins play a role in adaptation to their environment. Our results show increased heat-shock proteins accumulation at suboptimal pHs, which were not connected with any change in intracellular pH. In comparison to the mesophilic Chlamydomonas reinhardtii, the acidophilic species exhibited significantly higher accumulations of heat-shock proteins under control conditions, indicating an environmental adaptation of increased basal levels of heat-shock proteins. The results suggest that heat- shock proteins might play a role in the adaptation of C. acidophila, and possibly other acidophilic algae, to their extreme environment Y1 - 2006 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0168-6496 U6 - https://doi.org/10.1111/j.1574-6941.2006.00078.x SN - 0168-6496 ER - TY - JOUR A1 - Gerloff-Elias, Antje A1 - Spijkerman, Elly A1 - Schubert, H. T1 - Light acclimation of Chlamydomonas acidophila accumulating in the hypolimnion of an acidic lake (pH 2.6) N2 - 1. The unicellular green alga Chlamydomonas acidophila accumulates in a thin phytoplankton layer in the hypolimnion (deep chlorophyll maximum, DCM) of an extremely acidic lake (Lake 111, pH 2.6, Lusatia, Germany), in which the underwater light spectrum is distorted and red-shifted. 2. Chlamydomonas acidophila exhibited a significantly higher absorption efficiency and a higher cellular chlorophyll b content when incubated in the red shifted underwater light of Lake 111 than in a typical, blue-green dominated, light spectrum. 3. Chlamydomonas acidophila has excellent low light acclimation properties (increased chlorophyll b content, increased oxygen yield and a low light saturation point for photosynthesis) that support survival of the species in the low light climate of the DCM. 4. In situ acclimation to the DCM under low light and temperature decreased maximum photosynthetic rate in autotrophic C. acidophila cultures, whereas the presence of glucose under these conditions enhanced photosynthetic efficiency and capacity. 5. The adaptive abilities of C. acidophila to light and temperature shown in this study, in combination with the absence of potent competitors because of low lake pH, most probably enable the unusual dominance of the green alga in the DCM of Lake 111 Y1 - 2005 SN - 0046-5070 ER - TY - JOUR A1 - Spijkerman, Elly T1 - Is there really insufficient support for Tilman's R* concept? A comment on Miller et al Y1 - 2007 ER - TY - JOUR A1 - Spijkerman, Elly T1 - Phosphorus acquisition by Chlamydomonas acidophila under autotrophic and osmo-mixotrophic growth conditions Y1 - 2007 ER - TY - JOUR A1 - Spijkerman, Elly A1 - Garcia-Mendoza, E. A1 - Matthijs, H. C. P. A1 - Van Hunnik, E. A1 - Coesel, P. F. M. T1 - Negative effects of P-buffering and pH on photosynthetic activity of planktonic desmid species N2 - The photosynthetic activities of three planktonic desmid species (Staurastrum brachiatum, Staurodesmus cuspidatus var. curvatus, and Staurastrum chaetoceras) were compared after adaptation to medium enriched with either a 20 mM Na+- phosphate (P) or HEPES buffer. Incubations up to 2 d were carried out at pH 6 or 8 under normal air or air enriched with 5 % CO2. Gross maximum photosynthetic rate (Pmax) and growth rate were decreased in both S. brachiatum and Std. cuspidatus at higher pH when using the HEPES buffer and this effect was independent of CO2 concentration, indicating that pH had an inhibitory effect on photosynthesis and growth in these species. The P-buffer at pH 8 caused a large decrease in Pmax and quantum yield for charge separation in photosystem 2 (PS2), compared to HEPES-buffered algae. This effect was very large in both S. brachiatum and Std. cuspidatus, two species characteristic of soft water lakes, but also significant in S. chaetoceras, a species dominant in eutrophic, hard water lakes. The decreased Pmax in P- buffer could not be related to a significant increase in cellular P content known to be responsible for inhibition in isolated chloroplasts. Experiments at pH 6 and 8 showed that two conditions, high pH and high Na+ concentration, both contributed to the decreased Pmax and quantum yield in the desmids. Effects of a P-buffer were less pronounced by using K+-P buffer. The use of P-buffer at pH 8 possibly resulted in high irradiance stress in all species, indicated by damage in the PS2 core complex. In the soft water species pH 8 resulted in increased non-photochemical quenching together with a high de-epoxidation state of the xanthophyll cycle pigments. Y1 - 2004 UR - http://www.springerlink.com/app/home/ contribution.asp?wasp=d7fd2f5af00d494191eaadb905f68db3&referrer=parent&backto=searcharticlesresults,3,7; ER - TY - JOUR A1 - Poerschmann, Jürgen A1 - Spijkerman, Elly A1 - Langer, Uwe T1 - Fatty acid patterns in chlamydomonas sp as a marker for nutritional regimes and temperature under extremely acidic conditions N2 - Fatty acid profiles were used to characterize nutritional pathways in Chlamydomonas sp. isolated from an acidic mining lake (pH 2.7). Surprisingly, profiles of Chlamydomonas sp. grown in the lab under photoautotrophic, mixotrophic, and heterotrophic conditions at in situ deep strata lake water temperatures (8C) were very similar, polyunsaturated fatty acids including a-linolenic acid (18:3x3) and 16:4x3 along with palmitic acid (16:0) being most abundant. Therefore, heterotrophic growth of Chlamydomonas sp. at low temperatures can result in high concentrations of polyunsaturated fatty acids, as previously only described for some psychrophilic bacteria. By contrast, the cultivation of isolated Chlamydomonas sp. at 20C, reflecting surface water temperatures, provided fatty acid patterns characteristic of the nutrition strategy applied: the concentration of polyunsaturated fatty acids decreased when the growth pathway changed from photoautotrophic via mixotrophic to heterotrophic. Total fatty acid concentration also diminished in this order. Principal component analysis confirmed the significance of FA profiling to mirror nutritional pathways. Lake- water analysis revealed low concentrations of dissolved organic carbon, mainly consisting of polymeric fulvic acids that are unable to support heterotrophic growth of Chlamydomonas sp. Polymeric fulvic acids present in the deeper strata of the lake turned out to be formed in situ on the basis of organic monomers including reduced sulfur-containing ones, as revealed by thermochemolysis and pyrolysis. Growth of Chlamydomonas sp. in the deep chlorophyll maximum is therefore assumed to mainly result from photosynthesis, despite very low photon densities. Phytol-including metabolites proved to be significant biomarkers to indicate the nutritional pathway of Chlamydomonas sp. a, x-Dicarboxylic acidsùlight- induced degradation products of unsaturated fatty acidsùappeared to be good indicators of photooxidative alterations to the algal species under study. Y1 - 2004 ER - TY - JOUR A1 - Spijkerman, Elly A1 - Maberly, Stephen C. A1 - Coesel, P. F. M. T1 - Carbon acquisition mechanisms by planktonic desmids and their link to ecological distribution N2 - To test if different inorganic carbon (C-i) uptake mechanisms underlie the ecological distribution pattern of planktonic desmids, we performed pH-drift experiments with 12 strains, belonging to seven species, originating from lakes of different pH. Staurastrum brachiatum Ralfs and Staurodesmus cuspidatus (Ralfs) Teil. var. curvatus (W. West) Teil., species confined to acidic, soft water habitats, showed remarkably different behavior in the pH drift experiments: S. brachiatum appeared to use CO2 only, whereas Staurodesmus cuspidatus appeared to use HCO3- as well. Staurastrum chaetoceras (Schr.) Smith and Staurastrum planctonicum Teil, species well-known for their abundant occurrence in alkaline waters, were the most effective at using HCO3-. Other species, to be encountered in both slightly acidic and slightly alkaline waters, took an intermediate position. Experiments using specific inhibitors suggested that Cosmarium abbreviatum Rac. var. planctonicum W. & G.S. West and S. brachiatum use CO2 by an active CO2 uptake mechanism, whereas S. chaetoceras and Staurodesmus cuspidatus showed an active HCO3- uptake pattern. Most likely, these active uptake mechanisms make use of H+-ATPase, as none of the desmids expressed significant carbonic anhydrase activity. A series of strains of Staurastrum planctonicum isolated from different habitats, all clustered in between the species using HCO3-, but no further differentiation was observed. Therefore, desmids cannot be simply characterized as exclusive CO2 users, and the ecological distribution pattern of a desmid species does not unequivocally link to a certain C-i uptake mechanism. Nevertheless, there does appear to be a general ecological link between a species' C-i uptake mechanism and its ecological distribution Y1 - 2005 SN - 0008-4026 ER - TY - JOUR A1 - Spijkerman, Elly T1 - Inorganic carbon acquisition by Chlamydomonas acidophila across a pH range N2 - Chlamydomonas acidophila Negoro had a higher maximum growth rate upon aeration with 5% CO2 (v/v) than in nonaerated conditions at an external pH above 2. In medium with a pH of 1.0 or 2.0, a decrease in the maximum growth rate was observed upon CO2 aeration in comparison with nonaerated conditions. At both very low and very high external pH conditions, an induction of external carbonic anhydrase was detected; this being more pronounced in CO2-aerated cells than in nonaerated cells. It is therefore suggested that the induction of carbonic anhydrase is part of a stress response in Chlamydomonas acidophila. Comparison of some physiological characteristics of Chlamydomonas acidophila acclimated at pH 2.65 and at pH 6.0, revealed that CO2 aeration increased gross maximum photosynthesis at both pHs, whereas respiration, light acclimation, and photoinhibition were not effected. At pH 2.65, Chlamydomonas acidophila was found to have a carbon-concentrating mechanism under nonaerated conditions, whereas it did not under CO2-aerated conditions at pH 6. The affinity for CO2 use in O-2 production was not dependent on CO2 aeration, but it was much lower at pH 6 than it was at pH 2.65. CO2 kinetic characteristics indicate that the photosynthesis of Chlamydomonas acidophila in its natural environment is not limited by inorganic carbon Y1 - 2005 SN - 0008-4026 ER - TY - JOUR A1 - Spijkerman, Elly T1 - High Photosynthetic Rates under a Colimitation for Inorganic Phosphorus and Carbon Dioxide1 N2 - Inorganic phosphorus (P-i) and carbon (here, CO2) potentially limit the photosynthesis of phytoplankton simultaneously (colimitation). A single P-i limitation generally reduces photosynthesis, but the effect of a colimitation is not known. Therefore, photosynthesis was measured under P-i-limited conditions and high and low CO2, and osmo-mixotrophic (i.e., growth in the presence of glucose) conditions that result in colimiting conditions in some cases. The green alga Chlamydomonas acidophila Negoro was used as a model organism because low P-i and CO2 concentrations likely influence its photosynthetic rates in its natural environment. Results showed a decreasing maximum photosynthetic rate (P-max) and maximum quantum yield (Theta(II)) with increasing P-i limitation. In addition, a P-i limitation enhanced the relative contribution of dark respiration to P-max (R-d:P-max) but did not influence the compensation light intensity. P-max positively correlated with the cellular RUBISCO content. Osmo-mixotrophic conditions resulted in similar P-max, Theta(II), and RUBISCO content as in high-CO2 cultures. The low-CO2 cultures were colimited by P-i and CO2 and had the highest P-max, Theta(II), and RUBISCO content. Colimiting conditions for P-i and CO2 in C. acidophila resulted in an enhanced mismatch between photosynthesis and growth rates compared to the effect of a single P- i limitation. Primary productivity of colimited phytoplankton could thus be misinterpreted. Y1 - 2010 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0022-3646 U6 - https://doi.org/10.1111/j.1529-8817.2010.00859.x SN - 0022-3646 ER - TY - THES A1 - Spijkerman, Elly T1 - Ecophysiological studies on planktonic desmids and an acidophilic Chlamydomonas species Y1 - 2008 CY - Potsdam ER - TY - JOUR A1 - Spijkerman, Elly A1 - Barua, Deepak A1 - Gerloff-Elias, Antje A1 - Gaedke, Ursula A1 - Heckathorn, S. A. T1 - Stress responses and metal tolerance of Chlamydomonas acidophila in metal-enriched lake water and artificial medium N2 - Chlamydomonas acidophila faces high heavy-metal concentrations in acidic mining lakes, where it is a dominant phytoplankton species. To investigate the importance of metals to C. acidophila in these lakes, we examined the response of growth, photosynthesis, cell structure, heat-shock protein (Hsp) accumulation, and metal adsorption after incubation in metal-rich lake water and artificial growth medium enriched with metals (Fe, Zn). Incubation in both metal-rich lake water and medium caused large decreases in photosystem II function (though no differences among lakes), but no decrease in growth rate (except for medium + Fe). Concentrations of small Hsps were higher in algae incubated in metal-rich lake- water than in metal-enriched medium, whereas Hsp60 and Hsp70A were either less or equally expressed. Cellular Zn and Fe contents were lower, and metals adsorbed to the cell surface were higher, in lake-water-incubated algae than in medium- grown cells. The results indicate that high Zn or Fe levels are likely not the main or only contributor to the low primary production in mining lakes, and multiple adaptations of C. acidophila (e.g., high Hsp levels, decreased metal accumulation) increase its tolerance to metals and permit survival under such adverse environmental conditions. Supposedly, the main stress factor present in the lake water is an interaction between low P and high Fe concentrations. Y1 - 2007 UR - http://www.springerlink.com/content/p7273234p8255263/ U6 - https://doi.org/10.1007/s00792-007-0067-0 ER - TY - JOUR A1 - Spijkerman, Elly A1 - Bissinger, Vera A1 - Gaedke, Ursula T1 - Low potassium and inorganic carbon concentrations influence a possible phosphorus limitation in Chlamydomonas acidophila N2 - Chlamydomonas acidophila, a dominant phytoplankton species in the very acidic Lake 111 (pH 2.7) situated in Germany, faces low concentrations of inorganic phosphorus (P-i), inorganic carbon (C-i) and potassium (K+) in its environment, which may lead to a complex colimitation by these nutrients. We performed laboratory and field investigations to test for P-i limitation and its dependence on C-i and K+ concentrations. The minimum cell quota for phosphorus (Q(0)) and phosphatase enzyme activity were similar to those for neutrophilic algae, despite the low pH and high concentrations of iron and aluminium, indicating no extra metabolic costs or inhibition of enzymes by the extreme environment. The threshold concentration of soluble reactive phosphorus for growth (SRPt), the algal C:P ratio and the alkaline phosphatase enzyme activity all suggested a moderate P-i limitation of C. acidophila in Lake 111. SRPt and Q(0) were higher at low CO2 and K+ concentrations in culture, showing a relationship between C-i and P-i acquisition. Furthermore, SRPt and Q(0) were higher under K+/P-i-colimiting conditions than under P-i-limiting conditions alone, suggesting that K+ concentrations influence P-i limitation in C. acidophila as well. Our results show that a limitation by one macronutrient requires consideration of the availability of the others as their uptake mechanisms depend on each other. Notwithstanding these interactions, C-i or K+ concentrations had no clear influence on the P-i limitation of C. acidophila in Lake 111. Y1 - 2007 UR - http://www.tandfonline.com/doi/full/10.1080/09670260701529596 U6 - https://doi.org/10.1080/09670260701529596 ER - TY - CHAP A1 - Spijkerman, Elly A1 - Behrend, Hella A1 - Fach, Bettina A1 - Gaedke, Ursula T1 - INDIRECT EFFECT ON ECOSYSTEM FUNCTIONING : DECREASED PHOSPHORUS INCORPORATION NOT IRON TOXICITY DECREASES PHOTOSYNTHESIS AND GROWTH IN A GREEN MICROALGA T2 - Phycologia Y1 - 2013 SN - 0031-8884 VL - 52 IS - 4 SP - 104 EP - 105 PB - International Phycological Society CY - Lawrence ER - TY - JOUR A1 - Spijkerman, Elly T1 - Physiological characteristics of co-limiting conditions for P and C in Chlamydomonas Y1 - 2009 UR - http://www.phycologia.org/perlserv/?request=get-archive U6 - https://doi.org/10.2216/0031-8884-48.sp4.1 SN - 0031-8884 ER - TY - JOUR A1 - Clegg, Mark R. A1 - Gaedke, Ursula A1 - Böhrer, Bertram A1 - Spijkerman, Elly T1 - Complementary ecophysiological strategies combine to facilitate survival in the hostile conditions of a deep chlorophyll maximum JF - Oecologia N2 - In the deep, cooler layers of clear, nutrient-poor, stratified water bodies, phytoplankton often accumulate to form a thin band or "deep chlorophyll maximum" (DCM) of ecological importance. Under such conditions, these photosynthetic microorganisms may be close to their physiological compensation points and to the boundaries of their ecological tolerance. To grow and survive any resulting energy limitation, DCM species are thought to exhibit highly specialised or flexible acclimation strategies. In this study, we investigated several of the adaptable ecophysiological strategies potentially employed by one such species, Chlamydomonas acidophila: a motile, unicellular, phytoplanktonic flagellate that often dominates the DCM in stratified, acidic lakes. Physiological and behavioural responses were measured in laboratory experiments and were subsequently related to field observations. Results showed moderate light compensation points for photosynthesis and growth at 22A degrees C, relatively low maintenance costs, a behavioural preference for low to moderate light, and a decreased compensation point for photosynthesis at 8A degrees C. Even though this flagellated alga exhibited a physiologically mediated diel vertical migration in the field, migrating upwards slightly during the day, the ambient light reaching the DCM was below compensation points, and so calculations of daily net photosynthetic gain showed that survival by purely autotrophic means was not possible. Results suggested that strategies such as low-light acclimation, small-scale directed movements towards light, a capacity for mixotrophic growth, acclimation to low temperature, in situ exposure to low O-2, high CO2 and high P concentrations, and an avoidance of predation, could combine to help overcome this energetic dilemma and explain the occurrence of the DCM. Therefore, corroborating the deceptive ecophysiological complexity of this and similar organisms, only a suite of complementary strategies can facilitate the survival of C. acidophila in this DCM. KW - DCM KW - Photosynthesis KW - Growth KW - Behaviour KW - Phytoplankton Y1 - 2012 U6 - https://doi.org/10.1007/s00442-011-2225-4 SN - 0029-8549 VL - 169 IS - 3 SP - 609 EP - 622 PB - Springer CY - New York ER - TY - JOUR A1 - Spijkerman, Elly A1 - Wacker, Alexander A1 - Weithoff, Guntram A1 - Leya, Thomas T1 - Elemental and fatty acid composition of snow algae in Arctic habitats JF - Frontiers in microbiology N2 - Red, orange or green snow is the macroscopic phenomenon comprising different eukaryotic algae. Little is known about the ecology and nutrient regimes in these algal communities. Therefore, eight snow algal communities from five intensively tinted snow fields in western Spitsbergen were analysed for nutrient concentrations and fatty acid (FA) composition. To evaluate the importance of a shift from green to red forms on the FA-variability of the field samples, four snow algal strains were grown under nitrogen replete and moderate light (+N+ML) or N-limited and high light (-N+HL) conditions. All eight field algal communities were dominated by red and orange cysts. Dissolved nutrient concentration of the snow revealed a broad range of NH4+ (<0.005-1.2 mg NI-1) and only low PO43- (< 18 mu g P I-1) levels. The external nutrient concentration did not reflect cellular nutrient ratios as C:N and C:P ratios of the communities were highest at locations containing relatively high concentrations of NH4- and PO43-. Molar N:P ratios ranged from 11 to 21 and did not suggest clear limitation of a single nutrient. On a per carbon basis, we found a 6-fold difference in total FA content between the eight snow algal communities, ranging from 50 to 300 mg FA g C-1. In multivariate analyses total FA content opposed the cellular N:C quota and a large part of the FA variability among field locations originated from the abundant FAs C181n-9, C18 2n-6, and C183n-3. Both field samples and snow algal strains grown under -N+HL conditions had high concentrations of C181n-9. FAs possibly accumulated due to the cessation of growth. Differences in color and nutritional composition between patches of snow algal communities within one snow field were not directly related to nutrient conditions. We propose that the highly patchy distribution of snow algae within and between snow fields may also result from differences in topographical and geological parameters such as slope, melting water rivulets, and rock formation. KW - Arctic snow algal bloom KW - cellular C:N:P ratio KW - ecology KW - extremophiles KW - lipids KW - nutrients KW - psychrophilic. KW - Spitsbergen Y1 - 2012 U6 - https://doi.org/10.3389/fmicb.2012.00380 SN - 1664-302X VL - 3 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Spijkerman, Elly A1 - Stojkovic, Slobodanka A1 - Beardall, John T1 - CO2 acquisition in Chlamydomonas acidophila is influenced mainly by CO2, not phosphorus, availability JF - Photosynthesis research N2 - The extremophilic green microalga Chlamydomonas acidophila grows in very acidic waters (pH 2.3-3.4), where CO2 is the sole inorganic carbon source. Previous work has revealed that the species can accumulate inorganic carbon (Ci) and exhibits high affinity CO2 utilization under low-CO2 (air-equilibrium) conditions, similar to organisms with an active CO2 concentrating mechanism (CCM), whereas both processes are down-regulated under high CO2 (4.5 % CO2) conditions. Responses of this species to phosphorus (Pi)-limited conditions suggested a contrasting regulation of the CCM characteristics. Therefore, we measured external carbonic anhydrase (CA(ext)) activities and protein expression (CAH1), the internal pH, Ci accumulation, and CO2-utilization in cells adapted to high or low CO2 under Pi-replete and Pi-limited conditions. Results reveal that C. acidophila expressed CA(ext) activity and expressed a protein cross-reacting with CAH1 (the CA(ext) from Chlamydomonas reinhardtii). Although the function of this CA remains unclear, CA(ext) activity and high affinity CO2 utilization were the highest under low CO2 conditions. C. acidophila accumulated Ci and expressed the CAH1 protein under all conditions tested, and C. reinhardtii also contained substantial amounts of CAH1 protein under Pi-limitation. In conclusion, Ci utilization is optimized in C. acidophila under ecologically relevant conditions, which may enable optimal survival in its extreme Ci- and Pi-limited habitat. The exact physiological and biochemical acclimation remains to be further studied. KW - CO2 concentrating mechanism KW - Inorganic phosphorus limitation KW - Varying CO2 condition KW - Extremophilic green alga KW - Co-limitation KW - Internal pH KW - Inorganic carbon accumulation KW - Affinity for CO2 uptake Y1 - 2014 U6 - https://doi.org/10.1007/s11120-014-0016-6 SN - 0166-8595 SN - 1573-5079 VL - 121 IS - 2-3 SP - 213 EP - 221 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Spijkerman, Elly T1 - The expression of a carbon concentrating mechanism in Chlamydomonas acidophila under variable phosphorus, iron, and CO2 concentrations JF - Photosynthesis research N2 - The CO2 acquisition was analyzed in Chlamydomonas acidophila at pH 2.4 in a range of medium P and Fe concentrations and at high and low CO2 condition. The inorganic carbon concentrating factor (CCF) was related to cellular P quota (Q(p)), maximum CO2-uptake rate by photosynthesis (V-max; O-2), half saturation constant for CO2 uptake (K-0.5), and medium Fe concentration. There was no effect of the medium Fe concentration on the CCF. The CCF increased with increasing Q(p) in both high and low CO2 grown algae, but maximum Q(p) was 6-fold higher in the low CO2 cells. In high CO2 conditions, the CCF was low, ranging between 0.8 and 3.5. High CCF values up to 9.1 were only observed in CO2-limited cells, but P- and CO2-colimited cells had a low CCF. High CCF did not relate with a low K-0.5 as all CO2-limited cells had a low K-0.5 (<4 mu M CO2). High Ci-pools in cells with high Qp suggested the presence of an active CO2-uptake mechanism. The CCF also increased with increasing V-max; O-2 which reflect an adaptation to the nutrient in highest demand (CO2) under balanced growth conditions. It is proposed that the size of the CCF in C. acidophila is more strongly related to porter density for CO2 uptake (reflected in V-max; O-2) and less- to high-affinity CO2 uptake (low K-0.5) at balanced growth. In addition, high CCF can only be realized with high Q(p). KW - C3 photosynthesis KW - Micro-algae KW - Carbon concentrating mechanism KW - Phosphorus limitation KW - Iron toxicity Y1 - 2011 U6 - https://doi.org/10.1007/s11120-010-9607-z SN - 0166-8595 VL - 109 IS - 1-3 SP - 179 EP - 189 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Spijkerman, Elly A1 - Wacker, Alexander T1 - Interactions between P-limitation and different C conditions on the fatty acid composition of an extremophile microalga JF - Extremophiles : life under extreme conditions N2 - The extremophilic microalga Chlamydomonas acidophila inhabits very acidic waters (pH 2-3.5), where its growth is often limited by phosphorus (P) or colimited by P and inorganic carbon (CO(2)). Because this alga is a major food source for predators in acidic habitats, we studied its fatty acid content, which reflects their quality as food, grown under a combination of P-limited and different carbon conditions (either mixotrophically with light + glucose or at high or low CO(2), both without glucose). The fatty acid composition largely depended on the cellular P content: stringent P-limited cells had a higher total fatty acid concentration and had a lower percentage of polyunsaturated fatty acids. An additional limitation for CO(2) inhibited this decrease, especially reflected in enhanced concentrations of 18:3(9,12,15) and 16:4(3,7,10,13), resulting in cells relatively rich in polyunsaturated fatty acids under colimiting growth conditions. The percentage of polyunsaturated to total fatty acid content was positively related with maximum photosynthesis under all conditions applied. The two factors, P and CO(2), thus interact in their effect on the fatty acid composition in C. acidophila, and colimited cells P-limited algae can be considered a superior food source for herbivores because of the high total fatty acid content and relative richness in polyunsaturated fatty acids. KW - Acidophilic algae KW - Cellular P quota KW - Chlamydomonas acidophila KW - Chlorophyceae KW - Colimitation KW - CO(2) KW - Fatty acid composition KW - Food quality KW - Glucose KW - Mixotrophy KW - Photosynthesis KW - Phytoplankton KW - Phosphorus limitation Y1 - 2011 U6 - https://doi.org/10.1007/s00792-011-0390-3 SN - 1431-0651 VL - 15 IS - 5 SP - 597 EP - 609 PB - Springer CY - Tokyo ER - TY - JOUR A1 - Wacker, Alexander A1 - Piepho, Maike A1 - Spijkerman, Elly T1 - Photosynthetic and fatty acid acclimation of four phytoplankton species in response to light intensity and phosphorus availability JF - European journal of phycology N2 - Photosynthetic acclimation of phytoplankton to lower irradiation can be met by several strategies such as increasing the affinity for light or increasing antenna size and stacking of the thylakoids. The latter is reflected by a higher proportion of polyunsaturated fatty acids (PUFAs). Additionally, photosynthetic capacity (P-max), respiratory losses, and proton leakage can be reduced under low light. Here we consider the effect of light intensity and phosphorus availability simultaneously on the photosynthetic acclimation and fatty acid composition of four phytoplankters. We studied representatives of the Chlorophyceae, Cryptophyceae and Mediophyceae, all of which are important components of plankton communities in temperate lakes. In our analysis, excluding fatty acid composition, we found different acclimation strategies in the chlorophytes Scenedesmus quadricauda, Chlamydomonas globosa, cryptophyte Cryptomonas ovata and ochrophyte Cyclotella meneghiniana. We observed interactive effects of light and phosphorus conditions on photosynthetic capacity in S. quadricauda and Cry. ovata. Cry. ovata can be characterized as a low light-acclimated species, whereas S. quadricauda and Cyc. meneghiniana can cope best with a combination of high light intensities and low phosphorus supply. Principal component analyses (PCA), including fatty acid composition, showed further species-specific patterns in their regulation of P-max with PUFAs and light. In S. quadricauda and Cyc. meneghiniana, PUFAs negatively affected the relationship between P-max and light. In Chl. globosa, lower light coincided with higher PUFAs and lower P-max, but PCA also indicated that PUFAs had no direct influence on P-max. PUFAs and P-max were unaffected by light in Cry. ovata. We did not observe a general trend in the four species tested and concluded that, in particular, the interactive effects highlight the importance of taking into account more than one environmental factor when assessing photosynthetic acclimation to lower irradiation. KW - chlorophyll content KW - dark respiration KW - FAME KW - light acclimation KW - oxygen evolution KW - photosynthesis KW - phytoplankton KW - polyunsaturated fatty acids Y1 - 2015 U6 - https://doi.org/10.1080/09670262.2015.1050068 SN - 0967-0262 SN - 1469-4433 VL - 50 IS - 3 SP - 288 EP - 300 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Wacker, Alexander A1 - Marzetz, Vanessa A1 - Spijkerman, Elly T1 - Interspecific competition in phytoplankton drives the availability of essential mineral and biochemical nutrients JF - Ecology : a publication of the Ecological Society of America N2 - The underlying mechanisms and consequences of competition and diversity are central themes in ecology. A higher diversity of primary producers often results in higher resource use efficiency in aquatic and terrestrial ecosystems. This may result in more food for consumers on one hand, while, on the other hand, it can also result in a decreased food quality for consumers; higher biomass combined with the same availability of the limiting compound directly reduces the dietary proportion of the limiting compound. Here we tested whether and how interspecific competition in phytoplankton communities leads to changes in resource use efficiency and cellular concentrations of nutrients and fatty acids. The measured particulate carbon : phosphorus ratios (C:P) and fatty acid concentrations in the communities were compared to the theoretically expected ratios and concentrations of measurements on simultaneously running monocultures. With interspecific competition, phytoplankton communities had higher concentrations of the monounsaturated fatty acid oleic acid and also much higher concentrations of the ecologically and physiologically relevant long-chain polyunsaturated fatty acid eicosapentaenoic acid than expected concentrations based on monocultures. Such higher availability of essential fatty acids may contribute to the positive relationship between phytoplankton diversity and zooplankton growth, and may compensate limitations by mineral nutrients in higher trophic levels. KW - biodiversity KW - C:P ratio KW - competition KW - eicosapentaenoic acid KW - elemental composition KW - EPA KW - food quality KW - minerals KW - phosphorus KW - polyunsaturated fatty acids KW - PUFA KW - resource use efficiency Y1 - 2015 U6 - https://doi.org/10.1890/14-1915.1 SN - 0012-9658 SN - 1939-9170 VL - 96 IS - 9 SP - 2467 EP - 2477 PB - Wiley CY - Washington ER - TY - CHAP A1 - Lachmann, Sabrina C. A1 - Spijkerman, Elly A1 - Maberly, Stephen C. T1 - Ecology matters: linking inorganic carbon acquisition to ecological preference in four species of microalgae (Chlorophyceae) T2 - European journal of phycology Y1 - 2015 SN - 0967-0262 SN - 1469-4433 VL - 50 SP - 98 EP - 98 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - CHAP A1 - Spijkerman, Elly A1 - de Castro, Francisco A1 - Gaedke, Ursula T1 - Independent colimitation for Co2 and inorganic phosphorus T2 - European journal of phycology Y1 - 2015 SN - 0967-0262 SN - 1469-4433 VL - 50 SP - 98 EP - 99 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - GEN A1 - Marzetz, Vanessa A1 - Spijkerman, Elly A1 - Striebel, Maren A1 - Wacker, Alexander T1 - Phytoplankton Community Responses to Interactions Between Light Intensity, Light Variations, and Phosphorus Supply T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In a changing world, phytoplankton communities face a large variety of challenges including altered light regimes. These alterations are caused by more pronounced stratification due to rising temperatures, enhanced eutrophication, and browning of lakes. Community responses toward these effects can emerge as alterations in physiology, biomass, biochemical composition, or diversity. In this study, we addressed the combined effects of changes in light and nutrient conditions on community responses. In particular, we investigated how light intensity and variability under two nutrient conditions influence (1) fast responses such as adjustments in photosynthesis, (2) intermediate responses such as pigment adaptation and (3) slow responses such as changes in community biomass and species composition. Therefore, we exposed communities consisting of five phytoplankton species belonging to different taxonomic groups to two constant and two variable light intensity treatments combined with two levels of phosphorus supply. The tested phytoplankton communities exhibited increased fast reactions of photosynthetic processes to light variability and light intensity. The adjustment of their light harvesting mechanisms via community pigment composition was not affected by light intensity, variability, or nutrient supply. However, pigment specific effects of light intensity, light variability, and nutrient supply on the proportion of the respective pigments were detected. Biomass was positively affected by higher light intensity and nutrient concentrations while the direction of the effect of variability was modulated by light intensity. Light variability had a negative impact on biomass at low, but a positive impact at high light intensity. The effects on community composition were species specific. Generally, the proportion of green algae was higher under high light intensity, whereas the cyanobacterium performed better under low light conditions. In addition to that, the diatom and the cryptophyte performed better with high nutrient supply while the green algae as well as the cyanobacterium performed better at low nutrient conditions. This shows that light intensity, light variability, and nutrient supply interactively affect communities. Furthermore, the responses are highly species and pigment specific, thus to clarify the effects of climate change a deeper understanding of the effects of light variability and species interactions within communities is important. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1109 KW - phytoplankton communities KW - light variability KW - photosynthetic rate KW - climate change KW - resource competition KW - light intensity (irradiance) KW - pigment composition KW - nutrient supply Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-491041 SN - 1866-8372 IS - 1109 ER - TY - JOUR A1 - Marzetz, Vanessa A1 - Spijkerman, Elly A1 - Striebel, Maren A1 - Wacker, Alexander T1 - Phytoplankton Community Responses to Interactions Between Light Intensity, Light Variations, and Phosphorus Supply JF - Frontiers in Environmental Science N2 - In a changing world, phytoplankton communities face a large variety of challenges including altered light regimes. These alterations are caused by more pronounced stratification due to rising temperatures, enhanced eutrophication, and browning of lakes. Community responses toward these effects can emerge as alterations in physiology, biomass, biochemical composition, or diversity. In this study, we addressed the combined effects of changes in light and nutrient conditions on community responses. In particular, we investigated how light intensity and variability under two nutrient conditions influence (1) fast responses such as adjustments in photosynthesis, (2) intermediate responses such as pigment adaptation and (3) slow responses such as changes in community biomass and species composition. Therefore, we exposed communities consisting of five phytoplankton species belonging to different taxonomic groups to two constant and two variable light intensity treatments combined with two levels of phosphorus supply. The tested phytoplankton communities exhibited increased fast reactions of photosynthetic processes to light variability and light intensity. The adjustment of their light harvesting mechanisms via community pigment composition was not affected by light intensity, variability, or nutrient supply. However, pigment specific effects of light intensity, light variability, and nutrient supply on the proportion of the respective pigments were detected. Biomass was positively affected by higher light intensity and nutrient concentrations while the direction of the effect of variability was modulated by light intensity. Light variability had a negative impact on biomass at low, but a positive impact at high light intensity. The effects on community composition were species specific. Generally, the proportion of green algae was higher under high light intensity, whereas the cyanobacterium performed better under low light conditions. In addition to that, the diatom and the cryptophyte performed better with high nutrient supply while the green algae as well as the cyanobacterium performed better at low nutrient conditions. This shows that light intensity, light variability, and nutrient supply interactively affect communities. Furthermore, the responses are highly species and pigment specific, thus to clarify the effects of climate change a deeper understanding of the effects of light variability and species interactions within communities is important. KW - phytoplankton communities KW - light variability KW - photosynthetic rate KW - climate change KW - resource competition KW - light intensity (irradiance) KW - pigment composition KW - nutrient supply Y1 - 2020 U6 - https://doi.org/10.3389/fenvs.2020.539733 SN - 2296-665X VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Lachmann, Sabrina C. A1 - Mettler-Altmann, Tabea A1 - Wacker, Alexander A1 - Spijkerman, Elly T1 - Nitrate or ammonium BT - Influences of nitrogen source on the physiology of a green alga JF - Ecology and evolution N2 - In freshwaters, algal species are exposed to different inorganic nitrogen (Ni) sources whose incorporation varies in biochemical energy demand. We hypothesized that due to the lesser energy requirement of ammonium (NH4+)-use, in contrast to nitrate (NO3-)-use, more energy remains for other metabolic processes, especially under CO2-and phosphorus (Pi) limiting conditions. Therefore, we tested differences in cell characteristics of the green alga Chlamydomonas acidophila grown on NH4+ or NO3- under covariation of CO2 and Pi-supply in order to determine limitations, in a full-factorial design. As expected, results revealed higher carbon fixation rates for NH4+ grown cells compared to growth with NO3- under low CO2 conditions. NO3- -grown cells accumulated more of the nine analyzed amino acids, especially under Pi-limited conditions, compared to cells provided with NH4+. This is probably due to a slower protein synthesis in cells provided with NO3-. In contrast to our expectations, compared to NH4+ -grown cells NO3- -grown cells had higher photosynthetic efficiency under Pi-limitation. In conclusion, growth on the Ni-source NH4+ did not result in a clearly enhanced Ci-assimilation, as it was highly dependent on Pi and CO2 conditions (replete or limited). Results are potentially connected to the fact that C. acidophila is able to use only CO2 as its inorganic carbon (Ci) source. KW - amino acids KW - carbon uptake kinetics KW - CO2 conditions KW - nitrogen KW - phosphorus limitation Y1 - 2019 U6 - https://doi.org/10.1002/ece3.4790 SN - 2045-7758 VL - 9 IS - 3 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Grzesiuk, Malgorzata A1 - Wacker, Alexander A1 - Spijkerman, Elly T1 - Photosynthetic sensitivity of phytoplankton to commonly used pharmaceuticals and its dependence on cellular phosphorus status JF - Ecotoxicology N2 - Recently pharmaceuticals have become significant environmental pollutants in aquatic ecosystems, that could affect primary producers such as microalgae. Here we analyzed the effect of pharmaceuticals on the photosynthesis of microalgae commonly found in freshwater-two species of Chlorophyceae and a member of the Eustigmatophyceae, via PAM fluorometry. As pharmaceuticals, three medicines often consumed in households were chosen: (i) fluoxetine, an antidepressant, (ii) propranolol, a beta-blocker and (iii) ibuprofen, an anti-inflammatory and analgesic medicine. The EC50 for the quantum yield of photosystem II in phytoplankton acclimated to inorganic phosphorus (P-i)-replete and P-i-limited conditions was estimated. Acute toxicity experiments over a 5 h exposure revealed that Nannochloropsis limnetica was the least sensitive to pharmaceuticals in its photosynthetic yield out of all species tested. Although the estimation of sub-lethal effects can be vital in contrast to that of LC(50)s, the EC50 values in all species and for all medicines were orders of magnitude higher than concentrations found in polluted surface water. Chlamydomonas reinhardtii was the most sensitive to fluoxetine (EC50 of 1.6 mg L-1), and propranolol (EC50 of 3 mg L-1). Acutodesmus obliquus was most sensitive to ibuprofen (EC50 of 288 mg L-1). Additionally, the sensitivity to the pharmaceuticals changed under a P-i-limitation; the green algae became less sensitive to fluoxetine and propranolol. In contrast, P-i-limited algal species were more sensitive to ibuprofen. Our results suggest that the sensitivity of algae to pharmaceuticals is (i) highly compound- and species-specific and (ii) dependent on the cellular P status. KW - Freshwater algae KW - Medicine KW - EC50 KW - PAM fluorometry KW - Tolerance Y1 - 2016 U6 - https://doi.org/10.1007/s10646-016-1628-8 SN - 0963-9292 SN - 1573-3017 VL - 25 SP - 697 EP - 707 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Lachmann, Sabrina C. A1 - Maberly, Stephen C. A1 - Spijkerman, Elly T1 - ECOPHYSIOLOGY MATTERS: LINKING INORGANIC CARBON ACQUISITION TO ECOLOGICAL PREFERENCE IN FOUR SPECIES OF MICROALGAE (CHLOROPHYCEAE) JF - Journal of phycology N2 - The effect of CO2 supply is likely to play an important role in algal ecology. Since inorganic carbon (C-i) acquisition strategies are very diverse among microalgae and C-i availability varies greatly within and among habitats, we hypothesized that C-i acquisition depends on the pH of their preferred natural environment (adaptation) and that the efficiency of C-i uptake is affected by CO2 availability (acclimation). To test this, four species of green algae originating from different habitats were studied. The pH-drift and C-i uptake kinetic experiments were used to characterize C-i acquisition strategies and their ability to acclimate to high and low CO2 conditions and high and low pH was evaluated. Results from pH drift experiments revealed that the acidophile and acidotolerant Chlamydomonas species were mainly restricted to CO2, whereas the two neutrophiles were efficient bicarbonate users. CO2 compensation points in low CO2-acclimated cultures ranged between 0.6 and 1.4 mu M CO2 and acclimation to different culture pH and CO2 conditions suggested that CO2 concentrating mechanisms were present in most species. High CO2 acclimated cultures adapted rapidly to low CO2 condition during pH-drifts. C-i uptake kinetics at different pH values showed that the affinity for C-i was largely influenced by external pH, being highest under conditions where CO2 dominated the C-i pool. In conclusion, C-i acquisition was highly variable among four species of green algae and linked to growth pH preference, suggesting that there is a connection between C-i acquisition and ecological distribution. KW - acidophile KW - carbon acquisition KW - CCM KW - Chlamydomonas KW - Chlorella KW - CO2 supply KW - extremophile KW - inorganic carbon uptake kinetics KW - pH-drift KW - Scenedesmus Y1 - 2016 U6 - https://doi.org/10.1111/jpy.12462 SN - 0022-3646 SN - 1529-8817 VL - 52 SP - 1051 EP - 1063 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Spijkerman, Elly A1 - Stojkovic, Slobodanka A1 - Holland, Daryl A1 - Lachmann, Sabrina C. A1 - Beardall, John T1 - Nutrient induced fluorescence transients (NIFTs) provide a rapid measure of P and C (co-)limitation in a green alga JF - European journal of phycology N2 - Nutrient Induced Fluorescence Transients (NIFTs) have been shown to be a possible way of testing for the limiting nutrient in algal populations. In this study we tested the hypothesis that NIFTs can be used to detect a (co-)limitation for inorganic phosphorus (Pi) and CO2 in the green alga Chlamydomonas acidophila and that the magnitude of the NIFTs can be related to cellular P:C ratios. We show a co-limitation response for Pi and CO2 via traditional nutrient enrichment experiments in natural phytoplankton populations dominated by C. acidophila. We measured NIFT responses after a Pi- or a CO2-spike in C. acidophila batch cultures at various stages of Pi and inorganic C limitation. Significant NIFTs were observed in response to spikes in both nutrients. The NIFT response to a Pi-spike showed a strong negative correlation with cellular P:C ratio that was pronounced below 3 mmol P: mol C (equivalent to 0.2 pg P cell(-1)). Both cellular P and C content influenced the extent of the Pi-NIFT response. The NIFT response to a CO2-spike correlated to low CO2 culturing conditions and also had a negative correlation with cellular P content. A secondary response within the Pi-NIFT response was related to the CO2 concentration and potentially reflected co-limitation. In conclusion, NIFTs provided a quick and reliable method to detect the growth-limiting nutrient in an extremophile green alga, under Pi-, CO2- and Pi/CO2 (co-)limited growth conditions. KW - acidophile KW - Chlamydomonas KW - CO2 concentrating mechanism KW - CO2 limitation KW - extremophile KW - nutrient limitation KW - photosynthesis response KW - phytoplankton KW - stoichiometry Y1 - 2016 U6 - https://doi.org/10.1080/09670262.2015.1095355 SN - 0967-0262 SN - 1469-4433 VL - 51 SP - 47 EP - 58 PB - Hindawi CY - Abingdon ER - TY - JOUR A1 - Chorus, Ingrid A1 - Spijkerman, Elly T1 - What Colin Reynolds could tell us about nutrient limitation, N:P ratios and eutrophication control JF - Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica N2 - Colin Reynolds exquisitely consolidated our understanding of driving forces shaping phytoplankton communities and those setting the upper limit to biomass yield, with limitation typically shifting from light in winter to phosphorus in spring. Nonetheless, co-limitation is frequently postulated from enhanced growth responses to enrichments with both N and P or from N:P ranging around the Redfield ratio, concluding a need to reduce both N and P in order to mitigate eutrophication. Here, we review the current understanding of limitation through N and P and of co-limitation. We conclude that Reynolds is still correct: (i) Liebig's law of the minimum holds and reducing P is sufficient, provided concentrations achieved are low enough; (ii) analyses of nutrient limitation need to exclude evidently non-limiting situations, i.e. where soluble P exceeds 3-10 mu g/l, dissolved N exceeds 100-130 mu g/l and total P and N support high biomass levels with self-shading causing light limitation; (iii) additionally decreasing N to limiting concentrations may be useful in specific situations (e.g. shallow waterbodies with high internal P and pronounced denitrification); (iv) management decisions require local, situation-specific assessments. The value of research on stoichiometry and co-limitation lies in promoting our understanding of phytoplankton ecophysiology and community ecology. KW - phytoplankton KW - nitrogen limitation KW - redfield ratio KW - co-limitation KW - enrichment experiments Y1 - 2020 U6 - https://doi.org/10.1007/s10750-020-04377-w SN - 0018-8158 SN - 1573-5117 VL - 848 IS - 1 SP - 95 EP - 111 PB - Springer Nature CY - Berlin ER - TY - GEN A1 - Chorus, Ingrid A1 - Spijkerman, Elly T1 - What Colin Reynolds could tell us about nutrient limitation, N:P ratios and eutrophication control T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Colin Reynolds exquisitely consolidated our understanding of driving forces shaping phytoplankton communities and those setting the upper limit to biomass yield, with limitation typically shifting from light in winter to phosphorus in spring. Nonetheless, co-limitation is frequently postulated from enhanced growth responses to enrichments with both N and P or from N:P ranging around the Redfield ratio, concluding a need to reduce both N and P in order to mitigate eutrophication. Here, we review the current understanding of limitation through N and P and of co-limitation. We conclude that Reynolds is still correct: (i) Liebig's law of the minimum holds and reducing P is sufficient, provided concentrations achieved are low enough; (ii) analyses of nutrient limitation need to exclude evidently non-limiting situations, i.e. where soluble P exceeds 3-10 mu g/l, dissolved N exceeds 100-130 mu g/l and total P and N support high biomass levels with self-shading causing light limitation; (iii) additionally decreasing N to limiting concentrations may be useful in specific situations (e.g. shallow waterbodies with high internal P and pronounced denitrification); (iv) management decisions require local, situation-specific assessments. The value of research on stoichiometry and co-limitation lies in promoting our understanding of phytoplankton ecophysiology and community ecology. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1344 KW - phytoplankton KW - nitrogen limitation KW - redfield ratio KW - co-limitation KW - enrichment experiments Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-541979 SN - 1866-8372 IS - 1 ER - TY - GEN A1 - Clegg, Mark R. A1 - Wacker, Alexander A1 - Spijkerman, Elly T1 - Phenotypic Diversity and Plasticity of Photoresponse Across an Environmentally Contrasting Family of Phytoflagellates T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Organisms often employ ecophysiological strategies to exploit environmental conditions and ensure bio-energetic success. However, the many complexities involved in the differential expression and flexibility of these strategies are rarely fully understood. Therefore, for the first time, using a three-part cross-disciplinary laboratory experimental analysis, we investigated the diversity and plasticity of photoresponsive traits employed by one family of environmentally contrasting, ecologically important phytoflagellates. The results demonstrated an extensive inter-species phenotypic diversity of behavioural, physiological, and compositional photoresponse across the Chlamydomonadaceae, and a multifaceted intra-species phenotypic plasticity, involving a broad range of beneficial photoacclimation strategies, often attributable to environmental predisposition and phylogenetic differentiation. Deceptively diverse and sophisticated strong (population and individual cell) behavioural photoresponses were observed, with divergence from a general preference for low light (and flexibility) dictated by intra-familial differences in typical habitat (salinity and trophy) and phylogeny. Notably, contrasting lower, narrow, and flexible compared with higher, broad, and stable preferences were observed in freshwater vs. brackish and marine species. Complex diversity and plasticity in physiological and compositional photoresponses were also discovered. Metabolic characteristics (such as growth rates, respiratory costs and photosynthetic capacity, efficiency, compensation and saturation points) varied elaborately with species, typical habitat (often varying more in eutrophic species, such as Chlamydomonas reinhardtii), and culture irradiance (adjusting to optimise energy acquisition and suggesting some propensity for low light). Considerable variations in intracellular pigment and biochemical composition were also recorded. Photosynthetic and accessory pigments (such as chlorophyll a, xanthophyll-cycle components, chlorophyll a:b and chlorophyll a:carotenoid ratios, fatty acid content and saturation ratios) varied with phylogeny and typical habitat (to attune photosystem ratios in different trophic conditions and to optimise shade adaptation, photoprotection, and thylakoid architecture, particularly in freshwater environments), and changed with irradiance (as reaction and harvesting centres adjusted to modulate absorption and quantum yield). The complex, concomitant nature of the results also advocated an integrative approach in future investigations. Overall, these nuanced, diverse, and flexible photoresponsive traits will greatly contribute to the functional ecology of these organisms, addressing environmental heterogeneity and potentially shaping individual fitness, spatial and temporal distribution, prevalence, and ecosystem dynamics. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1219 KW - photoresponse KW - behaviour KW - physiology KW - composition KW - photosynthesis KW - acclimation KW - Chlamydomonas KW - ecophysiology Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-536174 SN - 1866-8372 IS - 1219 ER - TY - JOUR A1 - Clegg, Mark R. A1 - Wacker, Alexander A1 - Spijkerman, Elly T1 - Phenotypic Diversity and Plasticity of Photoresponse Across an Environmentally Contrasting Family of Phytoflagellates JF - Frontiers in plant science : FPLS N2 - Organisms often employ ecophysiological strategies to exploit environmental conditions and ensure bio-energetic success. However, the many complexities involved in the differential expression and flexibility of these strategies are rarely fully understood. Therefore, for the first time, using a three-part cross-disciplinary laboratory experimental analysis, we investigated the diversity and plasticity of photoresponsive traits employed by one family of environmentally contrasting, ecologically important phytoflagellates. The results demonstrated an extensive inter-species phenotypic diversity of behavioural, physiological, and compositional photoresponse across the Chlamydomonadaceae, and a multifaceted intra-species phenotypic plasticity, involving a broad range of beneficial photoacclimation strategies, often attributable to environmental predisposition and phylogenetic differentiation. Deceptively diverse and sophisticated strong (population and individual cell) behavioural photoresponses were observed, with divergence from a general preference for low light (and flexibility) dictated by intra-familial differences in typical habitat (salinity and trophy) and phylogeny. Notably, contrasting lower, narrow, and flexible compared with higher, broad, and stable preferences were observed in freshwater vs. brackish and marine species. Complex diversity and plasticity in physiological and compositional photoresponses were also discovered. Metabolic characteristics (such as growth rates, respiratory costs and photosynthetic capacity, efficiency, compensation and saturation points) varied elaborately with species, typical habitat (often varying more in eutrophic species, such as Chlamydomonas reinhardtii), and culture irradiance (adjusting to optimise energy acquisition and suggesting some propensity for low light). Considerable variations in intracellular pigment and biochemical composition were also recorded. Photosynthetic and accessory pigments (such as chlorophyll a, xanthophyll-cycle components, chlorophyll a:b and chlorophyll a:carotenoid ratios, fatty acid content and saturation ratios) varied with phylogeny and typical habitat (to attune photosystem ratios in different trophic conditions and to optimise shade adaptation, photoprotection, and thylakoid architecture, particularly in freshwater environments), and changed with irradiance (as reaction and harvesting centres adjusted to modulate absorption and quantum yield). The complex, concomitant nature of the results also advocated an integrative approach in future investigations. Overall, these nuanced, diverse, and flexible photoresponsive traits will greatly contribute to the functional ecology of these organisms, addressing environmental heterogeneity and potentially shaping individual fitness, spatial and temporal distribution, prevalence, and ecosystem dynamics. KW - photoresponse KW - behaviour KW - physiology KW - composition KW - photosynthesis KW - acclimation KW - Chlamydomonas KW - ecophysiology Y1 - 2021 U6 - https://doi.org/10.3389/fpls.2021.707541 SN - 1664-462X IS - 12 PB - Frontiers Media CY - Lausanne ER -