TY - JOUR A1 - Volante, Silvia A1 - Pourteau, Amaury A1 - Collins, William J. A1 - Blereau, Eleanore A1 - Li, Zheng-Xiang A1 - Smit, Matthijs Arjen A1 - Evans, Noreen A1 - Nordsvan, Adam R. A1 - Spencer, Chris J. A1 - McDonald, Brad J. A1 - Li, Jiangyu A1 - Günter, Christina T1 - Multiple P-T-d-t paths reveal the evolution of the final Nuna assembly in northeast Australia JF - Journal of metamorphic geology N2 - The final assembly of the Mesoproterozoic supercontinent Nuna was marked by the collision of Laurentia and Australia at 1.60 Ga, which is recorded in the Georgetown Inlier of NE Australia. Here, we decipher the metamorphic evolution of this final Nuna collisional event using petrostructural analysis, major and trace element compositions of key minerals, thermodynamic modelling, and multi-method geochronology. The Georgetown Inlier is characterised by deformed and metamorphosed 1.70-1.62 Ga sedimentary and mafic rocks, which were intruded byc. 1.56 Ga old S-type granites. Garnet Lu-Hf and monazite U-Pb isotopic analyses distinguish two major metamorphic events (M1 atc. 1.60 Ga and M2 atc. 1.55 Ga), which allows at least two composite fabrics to be identified at the regional scale-c. 1.60 Ga S1 (consisting in fabrics S1a and S1b) andc. 1.55 Ga S2 (including fabrics S2a and S2b). Also, three tectono-metamorphic domains are distinguished: (a) the western domain, with S1 defined by low-P(LP) greenschist facies assemblages; (b) the central domain, where S1 fabric is preserved as medium-P(MP) amphibolite facies relicts, and locally as inclusion trails in garnet wrapped by the regionally dominant low-Pamphibolite facies S2 fabric; and (c) the eastern domain dominated by upper amphibolite to granulite facies S2 foliation. In the central domain, 1.60 GaMP-medium-T(MT) metamorphism (M1) developed within the staurolite-garnet stability field, with conditions ranging from 530-550 degrees C at 6-7 kbar (garnet cores) to 620-650 degrees C at 8-9 kbar (garnet rims), and it is associated with S1 fabric. The onset of 1.55 GaLP-high-T(HT) metamorphism (M2) is marked by replacement of staurolite by andalusite (M2a/D2a), which was subsequently pseudomorphed by sillimanite (M2b/D2b) where granite and migmatite are abundant.P-Tconditions ranged from 600 to 680 degrees C and 4-6 kbar for the M2b sillimanite stage. 1.60 Ga garnet relicts within the S2 foliation highlight the progressive obliteration of the S1 fabric by regional S2 in the central zone during peak M2 metamorphism. In the eastern migmatitic complex, partial melting of paragneiss and amphibolite occurred syn- to post-S2, at 730-770 degrees C and 6-8 kbar, and at 750-790 degrees C and 6 kbar, respectively. The pressure-temperature-deformation-time paths reconstructed for the Georgetown Inlier suggest ac. 1.60 Ga M1/D1 event recorded under greenschist facies conditions in the western domain and under medium-Pand medium-Tconditions in the central domain. This event was followed by the regional 1.56-1.54 Ga low-Pand high-Tphase (M2/D2), extensively recorded in the central and eastern domains. Decompression between these two metamorphic events is ascribed to an episode of exhumation. The two-stage evolution supports the previous hypothesis that the Georgetown Inlier preserves continental collisional and subsequent thermal perturbation associated with granite emplacement. KW - continental collision KW - Lu-Hf in garnet KW - petrostructural analysis KW - P-T-d-tpaths KW - supercontinent Nuna Y1 - 2020 U6 - https://doi.org/10.1111/jmg.12532 SN - 0263-4929 SN - 1525-1314 VL - 38 IS - 6 SP - 593 EP - 627 PB - Wiley-Blackwell CY - Oxford [u.a.] ER - TY - JOUR A1 - Kober, Florian A1 - Zeilinger, Gerald A1 - Ivy-Ochs, Susan A1 - Dolati, A. A1 - Smit, J. A1 - Kubik, Peter W. T1 - Climatic and tectonic control on fluvial and alluvial fan sequence formation in the Central Makran Range, SE-Iran JF - Global and planetary change N2 - The geomorphic evolution of the Makran Range of SE-Iran and SW-Pakistan has been controlled by the prevailing SW-Asian monsoon and Mediterranean winter rainfall climate and the surface uplift processes resulting from the Arabia-Eurasia collision. The impact of climate on Quaternary fluvial and alluvial sequence formation and their regional correlation has been little investigated due to limited age control of these sequences. Using Be-10 cosmogenic nuclide exposure ages we established a Middle to Late Pleistocene terrace chronology. Our record tentatively indicates that terrace levels were abandoned towards the transition to or during warmer/pluvial periods (interglacials and/or interstadials) back to Marine Isotope Stage (MIS) 7, but abandoned ages show a large spread. It is hypothesized that pluvial phases correspond with times of enhanced SW-monsoons and a northward shift of the Intertropical Convergence Zone (ITCZ). Furthermore, orbital periodidties can be deduced on frequencies related to obliquity and precession cycles. Overall, caution has to be placed in sampling and interpreting alluvial deposits, which may have complex inheritance patterns and spatially and temporarily variable catchment erosion histories and terrace-channel dynamics. Beside the dominant climate control on terrace formation, elevated channel steepness indices around major thrusts and numerous knickpoints indicate an additionally tectonic influence on terrace formation. Local incision rates (mean similar to 0.6-0.8 min.a(-1)) are variable in space and time but are similar to uplift rates obtained from coastal terraces and thus suggest a regional surface uplift. (C) 2013 Elsevier B.V. All rights reserved. KW - Cosmogenic nuclides KW - Monsoon KW - Climate KW - Tectonics KW - Terraces KW - Makran Y1 - 2013 U6 - https://doi.org/10.1016/j.gloplacha.2013.09.003 SN - 0921-8181 SN - 1872-6364 VL - 111 SP - 133 EP - 149 PB - Elsevier CY - Amsterdam ER -