TY - JOUR A1 - Padash, Amin A1 - Chechkin, Aleksei V. A1 - Dybiec, Bartlomiej A1 - Pavlyukevich, Ilya A1 - Shokri, Babak A1 - Metzler, Ralf T1 - First-passage properties of asymmetric Levy flights JF - Journal of physics : A, Mathematical and theoretical N2 - Lévy flights are paradigmatic generalised random walk processes, in which the independent stationary increments—the 'jump lengths'—are drawn from an -stable jump length distribution with long-tailed, power-law asymptote. As a result, the variance of Lévy flights diverges and the trajectory is characterised by occasional extremely long jumps. Such long jumps significantly decrease the probability to revisit previous points of visitation, rendering Lévy flights efficient search processes in one and two dimensions. To further quantify their precise property as random search strategies we here study the first-passage time properties of Lévy flights in one-dimensional semi-infinite and bounded domains for symmetric and asymmetric jump length distributions. To obtain the full probability density function of first-passage times for these cases we employ two complementary methods. One approach is based on the space-fractional diffusion equation for the probability density function, from which the survival probability is obtained for different values of the stable index and the skewness (asymmetry) parameter . The other approach is based on the stochastic Langevin equation with -stable driving noise. Both methods have their advantages and disadvantages for explicit calculations and numerical evaluation, and the complementary approach involving both methods will be profitable for concrete applications. We also make use of the Skorokhod theorem for processes with independent increments and demonstrate that the numerical results are in good agreement with the analytical expressions for the probability density function of the first-passage times. KW - Levy flights KW - first-passage KW - search dynamics Y1 - 2019 U6 - https://doi.org/10.1088/1751-8121/ab493e SN - 1751-8113 SN - 1751-8121 VL - 52 IS - 45 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Capała, Karol A1 - Padash, Amin A1 - Chechkin, Aleksei V. A1 - Shokri, Babak A1 - Metzler, Ralf A1 - Dybiec, Bartłomiej T1 - Levy noise-driven escape from arctangent potential wells JF - Chaos : an interdisciplinary journal of nonlinear science N2 - The escape from a potential well is an archetypal problem in the study of stochastic dynamical systems, representing real-world situations from chemical reactions to leaving an established home range in movement ecology. Concurrently, Levy noise is a well-established approach to model systems characterized by statistical outliers and diverging higher order moments, ranging from gene expression control to the movement patterns of animals and humans. Here, we study the problem of Levy noise-driven escape from an almost rectangular, arctangent potential well restricted by two absorbing boundaries, mostly under the action of the Cauchy noise. We unveil analogies of the observed transient dynamics to the general properties of stationary states of Levy processes in single-well potentials. The first-escape dynamics is shown to exhibit exponential tails. We examine the dependence of the escape on the shape parameters, steepness, and height of the arctangent potential. Finally, we explore in detail the behavior of the probability densities of the first-escape time and the last-hitting point. Y1 - 2020 U6 - https://doi.org/10.1063/5.0021795 SN - 1054-1500 SN - 1089-7682 VL - 30 IS - 12 PB - American Institute of Physics CY - Woodbury, NY ER - TY - JOUR A1 - Vahabi, Mahsa A1 - Schulz, Johannes H. P. A1 - Shokri, Babak A1 - Metzler, Ralf T1 - Area coverage of radial Levy flights with periodic boundary conditions JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We consider the area coverage of radial Levy flights in a finite square area with periodic boundary conditions. From simulations we show how the fractal path dimension d(f) and thus the degree of area coverage depends on the number of steps of the trajectory, the size of the area, and the resolution of the applied box counting algorithm. For sufficiently long trajectories and not too high resolution, the fractal dimension returned by the box counting method equals two, and in that sense the Levy flight fully covers the area. Otherwise, the determined fractal dimension equals the stable index of the distribution of jump lengths of the Levy flight. We provide mathematical expressions for the turnover between these two scaling regimes. As complementary methods to analyze confined Levy flights we investigate fractional order moments of the position for which we also provide scaling arguments. Finally, we study the time evolution of the probability density function and the first passage time density of Levy flights in a square area. Our findings are of interest for a general understanding of Levy flights as well as for the analysis of recorded trajectories of animals searching for food or for human motion patterns. Y1 - 2013 U6 - https://doi.org/10.1103/PhysRevE.87.042136 SN - 1539-3755 VL - 87 IS - 4 PB - American Physical Society CY - College Park ER -