TY - JOUR A1 - Kuhne, Maren A1 - Dippong, Martin A1 - Flemig, Sabine A1 - Hoffmann, Katrin A1 - Petsch, Kristin A1 - Schenk, Jörg A. A1 - Kunte, Hans-Jörg A1 - Schneider, Rudolf J. T1 - Comparative characterization of mAb producing hapten-specific hybridoma cells by flow cytometric analysis and ELISA JF - Journal of immunological methods N2 - A novel method that optimizes the screening for antibody-secreting hapten-specific hybridoma cells by using flow cytometry is described. Cell clones specific for five different haptens were analyzed. We selectively double stained and analyzed fixed hybridoma cells with fluorophore-labeled haptens to demonstrate the target-selectivity, and with a fluorophore-labeled anti-mouse IgG antibody to characterize the level of surface expression of membrane-bound IgGs. ELISA measurements with the supernatants of the individual hybridoma clones revealed that antibodies from those cells, which showed the highest fluorescence intensities in the flow cytometric analysis, also displayed the highest affinities for the target antigens. The fluorescence intensity of antibody-producing cells corresponded well with the produced antibodies' affinities toward their respective antigens. Immunohistochemical staining verified the successful double labeling of the cells. Our method makes it possible to perform a high-throughput screening for hybridoma cells, which have both an adequate IgG production rate and a high target affinity. (C) 2014 Elsevier B.V. All rights reserved. KW - Immunization KW - Hapten KW - Monoclonal antibodies KW - Hybridoma KW - Flow cytometry KW - ELISA Y1 - 2014 U6 - https://doi.org/10.1016/j.jim.2014.07.004 SN - 0022-1759 SN - 1872-7905 VL - 413 SP - 45 EP - 56 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dippong, Martin A1 - Carl, Peter A1 - Lenz, Christine A1 - Schenk, Jörg A. A1 - Hoffmann, Katrin A1 - Schwaar, Timm A1 - Schneider, Rudolf J. A1 - Kuhne, Maren T1 - Hapten-Specific Single-Cell Selection of Hybridoma Clones by Fluorescence-Activated Cell Sorting for the Generation of Monoclonal Antibodies JF - Analytical chemistry Y1 - 2017 U6 - https://doi.org/10.1021/acs.analchem.6b04569 SN - 0003-2700 SN - 1520-6882 VL - 89 SP - 4007 EP - 4012 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Tanski, George A1 - Bergstedt, Helena A1 - Bevington, Alexandre A1 - Bonnaventure, Philip A1 - Bouchard, Frederic A1 - Coch, Caroline A1 - Dumais, Simon A1 - Evgrafova, Alevtina A1 - Frauenfeld, Oliver W. A1 - Frederick, Jennifer A1 - Fritz, Michael A1 - Frolov, Denis A1 - Harder, Silvie A1 - Hartmeyer, Ingo A1 - Heslop, Joanne A1 - Hoegstroem, Elin A1 - Johansson, Margareta A1 - Kraev, Gleb A1 - Kuznetsova, Elena A1 - Lenz, Josefine A1 - Lupachev, Alexey A1 - Magnin, Florence A1 - Martens, Jannik A1 - Maslakov, Alexey A1 - Morgenstern, Anne A1 - Nieuwendam, Alexandre A1 - Oliva, Marc A1 - Radosavljevi, Boris A1 - Ramage, Justine Lucille A1 - Schneider, Andrea A1 - Stanilovskaya, Julia A1 - Strauss, Jens A1 - Trochim, Erin A1 - Vecellio, Daniel J. A1 - Weber, Samuel A1 - Lantuit, Hugues T1 - The Permafrost Young Researchers Network (PYRN) is getting older BT - The past, present, and future of our evolving community JF - Polar record N2 - A lasting legacy of the International Polar Year (IPY) 2007–2008 was the promotion of the Permafrost Young Researchers Network (PYRN), initially an IPY outreach and education activity by the International Permafrost Association (IPA). With the momentum of IPY, PYRN developed into a thriving network that still connects young permafrost scientists, engineers, and researchers from other disciplines. This research note summarises (1) PYRN’s development since 2005 and the IPY’s role, (2) the first 2015 PYRN census and survey results, and (3) PYRN’s future plans to improve international and interdisciplinary exchange between young researchers. The review concludes that PYRN is an established network within the polar research community that has continually developed since 2005. PYRN’s successful activities were largely fostered by IPY. With >200 of the 1200 registered members active and engaged, PYRN is capitalising on the availability of social media tools and rising to meet environmental challenges while maintaining its role as a successful network honouring the legacy of IPY. KW - Early-career scientists KW - Education KW - IPY KW - International Polar Year KW - Outreach KW - Permafrost Young Researchers Network KW - PYRN KW - Science communication Y1 - 2019 U6 - https://doi.org/10.1017/S0032247418000645 SN - 0032-2474 SN - 1475-3057 VL - 55 IS - 4 SP - 216 EP - 219 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Kupfer, Thomas A1 - Bauer, Evan B. A1 - van Roestel, Jan A1 - Bellm, Eric C. A1 - Bildsten, Lars A1 - Fuller, Jim A1 - Prince, Thomas A. A1 - Heber, Ulrich A1 - Geier, Stephan A1 - Green, Matthew J. A1 - Kulkarni, Shrinivas R. A1 - Bloemen, Steven A1 - Laher, Russ R. A1 - Rusholme, Ben A1 - Schneider, David T1 - Discovery of a Double-detonation Thermonuclear Supernova Progenitor JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters N2 - We present the discovery of a new double-detonation progenitor system consisting of a hot subdwarf B (sdB) binary with a white dwarf companion with a P (orb) = 76.34179(2) minutes orbital period. Spectroscopic observations are consistent with an sdB star during helium core burning residing on the extreme horizontal branch. Chimera light curves are dominated by ellipsoidal deformation of the sdB star and a weak eclipse of the companion white dwarf. Combining spectroscopic and light curve fits, we find a low-mass sdB star, M (sdB) = 0.383 +/- 0.028 M (circle dot) with a massive white dwarf companion, M (WD) = 0.725 +/- 0.026 M (circle dot). From the eclipses we find a blackbody temperature for the white dwarf of 26,800 K resulting in a cooling age of approximate to 25 Myr whereas our MESA model predicts an sdB age of approximate to 170 Myr. We conclude that the sdB formed first through stable mass transfer followed by a common envelope which led to the formation of the white dwarf companion approximate to 25 Myr ago. Using the MESA stellar evolutionary code we find that the sdB star will start mass transfer in approximate to 6 Myr and in approximate to 60 Myr the white dwarf will reach a total mass of 0.92 M (circle dot) with a thick helium layer of 0.17 M (circle dot). This will lead to a detonation that will likely destroy the white dwarf in a peculiar thermonuclear supernova. PTF1 J2238+7430 is only the second confirmed candidate for a double-detonation thermonuclear supernova. Using both systems we estimate that at least approximate to 1% of white dwarf thermonuclear supernovae originate from sdB+WD binaries with thick helium layers, consistent with the small number of observed peculiar thermonuclear explosions. Y1 - 2022 U6 - https://doi.org/10.3847/2041-8213/ac48f1 SN - 2041-8205 SN - 2041-8213 VL - 925 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Schulze-Makuch, Dirk A1 - Wagner, Dirk A1 - Kounaves, Samuel P. A1 - Mangelsdorf, Kai A1 - Devine, Kevin G. A1 - de Vera, Jean-Pierre A1 - Schmitt-Kopplin, Philippe A1 - Grossart, Hans-Peter A1 - Parro, Victor A1 - Kaupenjohann, Martin A1 - Galy, Albert A1 - Schneider, Beate A1 - Airo, Alessandro A1 - Froesler, Jan A1 - Davila, Alfonso F. A1 - Arens, Felix L. A1 - Caceres, Luis A1 - Cornejo, Francisco Solis A1 - Carrizo, Daniel A1 - Dartnell, Lewis A1 - DiRuggiero, Jocelyne A1 - Flury, Markus A1 - Ganzert, Lars A1 - Gessner, Mark O. A1 - Grathwohl, Peter A1 - Guan, Lisa A1 - Heinz, Jacob A1 - Hess, Matthias A1 - Keppler, Frank A1 - Maus, Deborah A1 - McKay, Christopher P. A1 - Meckenstock, Rainer U. A1 - Montgomery, Wren A1 - Oberlin, Elizabeth A. A1 - Probst, Alexander J. A1 - Saenz, Johan S. A1 - Sattler, Tobias A1 - Schirmack, Janosch A1 - Sephton, Mark A. A1 - Schloter, Michael A1 - Uhl, Jenny A1 - Valenzuela, Bernardita A1 - Vestergaard, Gisle A1 - Woermer, Lars A1 - Zamorano, Pedro T1 - Transitory microbial habitat in the hyperarid Atacama Desert JF - Proceedings of the National Academy of Sciences of the United States of America KW - habitat KW - aridity KW - microbial activity KW - biomarker KW - Mars Y1 - 2018 U6 - https://doi.org/10.1073/pnas.1714341115 SN - 0027-8424 VL - 115 IS - 11 SP - 2670 EP - 2675 PB - National Acad. of Sciences CY - Washington ER - TY - BOOK A1 - Flad, H.-J. A1 - Schneider, R. A1 - Schulze, Bert-Wolfgang T1 - Asymptotic Regularity of Solutions of Hartree-Fock Equations with Coulomb Potential T3 - Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partiell Y1 - 2007 SN - 1437-739X PB - Univ. CY - Potsdam ER -