TY - JOUR A1 - Strauss, Jens A1 - Schirrmeister, Lutz A1 - Grosse, Guido A1 - Fortier, Daniel A1 - Hugelius, Gustaf A1 - Knoblauch, Christian A1 - Romanovsky, Vladimir E. A1 - Schadel, Christina A1 - von Deimling, Thomas Schneider A1 - Schuur, Edward A. G. A1 - Shmelev, Denis A1 - Ulrich, Mathias A1 - Veremeeva, Alexandra T1 - Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability JF - Earth science reviews : the international geological journal bridging the gap between research articles and textbooks N2 - Permafrost is a distinct feature of the terrestrial Arctic and is vulnerable to climate warming. Permafrost degrades in different ways, including deepening of a seasonally unfrozen surface and localized but rapid development of deep thaw features. Pleistocene ice-rich permafrost with syngenetic ice-wedges, termed Yedoma deposits, are widespread in Siberia, Alaska, and Yukon, Canada and may be especially prone to rapid-thaw processes. Freeze-locked organic matter in such deposits can be re-mobilized on short time-scales and contribute to a carbon-cycle climate feedback. Here we synthesize the characteristics and vulnerability of Yedoma deposits by synthesizing studies on the Yedoma origin and the associated organic carbon pool. We suggest that Yedoma deposits accumulated under periglacial weathering, transport, and deposition dynamics in non-glaciated regions during the late Pleistocene until the beginning of late glacial warming. The deposits formed due to a combination of aeolian, colluvial, nival, and alluvial deposition and simultaneous ground ice accumulation. We found up to 130 gigatons organic carbon in Yedoma, parts of which are well-preserved and available for fast decomposition after thaw. Based on incubation experiments, up to 10% of the Yedoma carbon is considered especially decomposable and may be released upon thaw. The substantial amount of ground ice in Yedoma makes it highly vulnerable to disturbances such as thermokarst and thermo-erosion processes. Mobilization of permafrost carbon is expected to increase under future climate warming. Our synthesis results underline the need of accounting for Yedoma carbon stocks in next generation Earth-System-Models for a more complete representation of the permafrost-carbon feedback. KW - Perennial frozen ground KW - Thermokarst KW - Arctic KW - Late Pleistocene KW - Greenhouse gas source KW - Climate feedback Y1 - 2017 U6 - https://doi.org/10.1016/j.earscirev.2017.07.007 SN - 0012-8252 SN - 1872-6828 VL - 172 SP - 75 EP - 86 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zimmermann, Heike Hildegard A1 - Raschke, Elena A1 - Epp, Laura Saskia A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Schirrmeister, Lutz A1 - Schwamborn, Georg A1 - Herzschuh, Ulrike T1 - The history of tree and shrub taxa on Bol'shoy Lyakhovsky Island (New Siberian Archipelago) since the Last Interglacial Uncovered by Sedimentary Ancient DNA and Pollen Data JF - Genes N2 - Ecosystem boundaries, such as the Arctic-Boreal treeline, are strongly coupled with climate and were spatially highly dynamic during past glacial-interglacial cycles. Only a few studies cover vegetation changes since the last interglacial, as most of the former landscapes are inundated and difficult to access. Using pollen analysis and sedimentary ancient DNA (sedaDNA) metabarcoding, we reveal vegetation changes on Bol’shoy Lyakhovsky Island since the last interglacial from permafrost sediments. Last interglacial samples depict high levels of floral diversity with the presence of trees (Larix, Picea, Populus) and shrubs (Alnus, Betula, Ribes, Cornus, Saliceae) on the currently treeless island. After the Last Glacial Maximum, Larix re-colonised the island but disappeared along with most shrub taxa. This was probably caused by Holocene sea-level rise, which led to increased oceanic conditions on the island. Additionally, we applied two newly developed larch-specific chloroplast markers to evaluate their potential for tracking past population dynamics from environmental samples. The novel markers were successfully re-sequenced and exhibited two variants of each marker in last interglacial samples. SedaDNA can track vegetation changes as well as genetic changes across geographic space through time and can improve our understanding of past processes that shape modern patterns. KW - sedaDNA KW - metabarcoding KW - trnL KW - single-nucleotide polymorphism (SNP) KW - treeline KW - MIS 5 to 1 KW - permafrost deposits KW - radiocarbon ages KW - palaeoenvironment KW - Larix Y1 - 2017 U6 - https://doi.org/10.3390/genes8100273 SN - 2073-4425 VL - 8 IS - 10 SP - 273 PB - MDPI CY - Basel ER - TY - JOUR A1 - Morgenstern, Anne A1 - Overduin, Pier Paul A1 - Günther, Frank A1 - Stettner, Samuel A1 - Ramage, Justine A1 - Schirrmeister, Lutz A1 - Grigoriev, Mikhail N. A1 - Grosse, Guido T1 - Thermo-erosional valleys in Siberian ice-rich permafrost JF - Permafrost and Periglacial Processes N2 - Thermal erosion is a major mechanism of permafrost degradation, resulting in characteristic landforms. We inventory thermo-erosional valleys in ice-rich coastal lowlands adjacent to the Siberian Laptev Sea based on remote sensing, Geographic Information System (GIS), and field investigations for a first regional assessment of their spatial distribution and characteristics. Three study areas with similar geological (Yedoma Ice Complex) but diverse geomorphological conditions vary in valley areal extent, incision depth, and branching geometry. The most extensive valley networks are incised deeply (up to 35 m) into the broad inclined lowland around Mamontov Klyk. The flat, low-lying plain forming the Buor Khaya Peninsula is more degraded by thermokarst and characterized by long valleys of lower depth with short tributaries. Small, isolated Yedoma Ice Complex remnants in the Lena River Delta predominantly exhibit shorter but deep valleys. Based on these hydrographical network and topography assessments, we discuss geomorphological and hydrological connections to erosion processes. Relative catchment size along with regional slope interact with other Holocene relief-forming processes such as thermokarst and neotectonics. Our findings suggest that thermo-erosional valleys are prominent, hitherto overlooked permafrost degradation landforms that add to impacts on biogeochemical cycling, sediment transport, and hydrology in the degrading Siberian Yedoma Ice Complex. KW - geomorphology KW - periglacial landscapes KW - permafrost degradation KW - thermal KW - erosion KW - valley distribution KW - Yedoma Ice Complex Y1 - 2020 U6 - https://doi.org/10.1002/ppp.2087 SN - 1045-6740 SN - 1099-1530 VL - 32 IS - 1 SP - 59 EP - 75 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Zimmermann, Heike Hildegard A1 - Raschke, Elena A1 - Epp, Laura Saskia A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Schwamborn, Georg A1 - Schirrmeister, Lutz A1 - Overduin, Pier Paul A1 - Herzschuh, Ulrike T1 - Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia) JF - Biogeosciences N2 - Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions. Y1 - 2017 U6 - https://doi.org/10.5194/bg-14-575-2017 SN - 1726-4170 SN - 1726-4189 VL - 14 IS - 3 SP - 575 EP - 596 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Angelopoulos, Michael A1 - Overduin, Pier Paul A1 - Westermann, Sebastian A1 - Tronicke, Jens A1 - Strauss, Jens A1 - Schirrmeister, Lutz A1 - Biskaborn, Boris K. A1 - Liebner, Susanne A1 - Maksimov, Georgii A1 - Grigoriev, Mikhail N. A1 - Grosse, Guido T1 - Thermokarst lake to lagoon transitions in Eastern Siberia BT - do submerged taliks refreeze? JF - Journal of geophysical research : Earth surface N2 - As the Arctic coast erodes, it drains thermokarst lakes, transforming them into lagoons, and, eventually, integrates them into subsea permafrost. Lagoons represent the first stage of a thermokarst lake transition to a marine setting and possibly more saline and colder upper boundary conditions. In this research, borehole data, electrical resistivity surveying, and modeling of heat and salt diffusion were carried out at Polar Fox Lagoon on the Bykovsky Peninsula, Siberia. Polar Fox Lagoon is a seasonally isolated water body connected to Tiksi Bay through a channel, leading to hypersaline waters under the ice cover. The boreholes in the center of the lagoon revealed floating ice and a saline cryotic bed underlain by a saline cryotic talik, a thin ice-bearing permafrost layer, and unfrozen ground. The bathymetry showed that most of the lagoon had bedfast ice in spring. In bedfast ice areas, the electrical resistivity profiles suggested that an unfrozen saline layer was underlain by a thick layer of refrozen talik. The modeling showed that thermokarst lake taliks can refreeze when submerged in saltwater with mean annual bottom water temperatures below or slightly above 0 degrees C. This occurs, because the top-down chemical degradation of newly formed ice-bearing permafrost is slower than the refreezing of the talik. Hence, lagoons may precondition taliks with a layer of ice-bearing permafrost before encroachment by the sea, and this frozen layer may act as a cap on gas migration out of the underlying talik. KW - thermokarst lake KW - talik KW - lagoon KW - subsea permafrost KW - salt diffusion KW - Siberia Y1 - 2020 U6 - https://doi.org/10.1029/2019JF005424 SN - 2169-9003 SN - 2169-9011 VL - 125 IS - 10 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Mitzscherling, Julia A1 - Horn, Fabian A1 - Winterfeld, Maria A1 - Mahler, Linda A1 - Kallmeyer, Jens A1 - Overduin, Pier Paul A1 - Schirrmeister, Lutz A1 - Winkel, Matthias A1 - Grigoriev, Mikhail N. A1 - Wagner, Dirk A1 - Liebner, Susanne T1 - Microbial community composition and abundance after millennia of submarine permafrost warming JF - Biogeosciences N2 - Warming of the Arctic led to an increase in permafrost temperatures by about 0.3 degrees C during the last decade. Permafrost warming is associated with increasing sediment water content, permeability, and diffusivity and could in the long term alter microbial community composition and abundance even before permafrost thaws. We studied the long-term effect (up to 2500 years) of submarine permafrost warming on microbial communities along an onshore-offshore transect on the Siberian Arctic Shelf displaying a natural temperature gradient of more than 10 degrees C. We analysed the in situ development of bacterial abundance and community composition through total cell counts (TCCs), quantitative PCR of bacterial gene abundance, and amplicon sequencing and correlated the microbial community data with temperature, pore water chemistry, and sediment physicochemical parameters. On timescales of centuries, permafrost warming coincided with an overall decreasing microbial abundance, whereas millennia after warming microbial abundance was similar to cold onshore permafrost. In addition, the dissolved organic carbon content of all cores was lowest in submarine permafrost after millennial-scale warming. Based on correlation analysis, TCC, unlike bacterial gene abundance, showed a significant rank-based negative correlation with increasing temperature, while bacterial gene copy numbers showed a strong negative correlation with salinity. Bacterial community composition correlated only weakly with temperature but strongly with the pore water stable isotopes delta O-18 and delta D, as well as with depth. The bacterial community showed substantial spatial variation and an overall dominance of Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes, and Proteobacteria, which are amongst the microbial taxa that were also found to be active in other frozen permafrost environments. We suggest that, millennia after permafrost warming by over 10 degrees C, microbial community composition and abundance show some indications for proliferation but mainly reflect the sedimentation history and paleoenvironment and not a direct effect through warming. Y1 - 2019 U6 - https://doi.org/10.5194/bg-16-3941-2019 SN - 1726-4170 SN - 1726-4189 VL - 16 IS - 19 SP - 3941 EP - 3958 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Zimmermann, Heike Hildegard A1 - Raschke, Elena A1 - Epp, Laura Saskia A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Schwamborn, Georg A1 - Schirrmeister, Lutz A1 - Overduin, Pier Paul A1 - Herzschuh, Ulrike T1 - Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia) T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 670 KW - NE Siberia KW - vegetation patterns KW - environmental DNA KW - Arctic vegetation KW - frozen sediments KW - lake-sediments KW - gas-production KW - carbon KW - polygon KW - climate Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417130 SN - 1866-8372 IS - 670 ER - TY - JOUR A1 - Schennen, Stephan A1 - Tronicke, Jens A1 - Wetterich, Sebastian A1 - Allroggen, Niklas A1 - Schwamborn, Georg A1 - Schirrmeister, Lutz T1 - 3D ground-penetrating radar imaging of ice complex deposits in northern East Siberia JF - Geophysics N2 - Ice complex deposits are characteristic, ice-rich formations in northern East Siberia and represent an important part in the arctic carbon pool. Recently, these late Quaternary deposits are the objective of numerous investigations typically relying on outcrop and borehole data. Many of these studies can benefit from a 3D structural model of the subsurface for upscaling their observations or for constraining estimations of inventories, such as the local carbon stock. We have addressed this problem of structural imaging by 3D ground-penetrating radar (GPR), which, in permafrost studies, has been primarily used for 2D profiling. We have used a 3D kinematic GPR surveying strategy at a field site located in the New Siberian Archipelago on top of an ice complex. After applying a 3D GPR processing sequence, we were able to trace two horizons at depths below 20 m. Taking available borehole and outcrop data into account, we have interpreted these two features as interfaces of major lithologic units and derived a 3D cryostratigraphic model of the subsurface. Our data example demonstrated that a 3D surveying and processing strategy was crucial at our field site and showed the potential of 3D GPR to image geologic structures in complex ice-rich permafrost landscapes. Y1 - 2016 U6 - https://doi.org/10.1190/GEO2015-0129.1 SN - 0016-8033 SN - 1942-2156 VL - 81 SP - WA195 EP - WA202 PB - Society of Exploration Geophysicists CY - Tulsa ER - TY - JOUR A1 - Strauss, Jens A1 - Schirrmeister, Lutz A1 - Mangelsdorf, Kai A1 - Eichhorn, L. A1 - Wetterich, Sebastian A1 - Herzschuh, Ulrike T1 - Organic-matter quality of deep permafrost carbon - a study from Arctic Siberia JF - Biogeosciences N2 - The organic-carbon (OC) pool accumulated in Arctic permafrost (perennially frozen ground) equals the carbon stored in the modern atmosphere. To give an idea of how Yedoma region permafrost could respond under future climatic warming, we conducted a study to quantify the organic-matter quality (here defined as the intrinsic potential to be further transformed, decomposed, and mineralized) of late Pleistocene (Yedoma) and Holocene (thermokarst) deposits on the Buor-Khaya Peninsula, northeast Siberia. The objective of this study was to develop a stratigraphic classified organic-matter quality characterization. For this purpose the degree of organic-matter decomposition was estimated by using a multiproxy approach. We applied sedimentological (grain-size analyses, bulk density, ice content) and geochemical parameters (total OC, stable carbon isotopes (delta C-13),total organic carbon : nitrogen (C / N) ratios) as well as lipid biomarkers (n-alkanes, n-fatty acids, hopanes, triterpenoids, and biomarker indices, i.e., average chain length, carbon preference index (CPI), and higher-plant fatty-acid index (HPFA)). Our results show that the Yedoma and thermokarst organic-matter qualities for further decomposition exhibit no obvious degradation-depth trend. Relatively, the C / N and delta C-13 values and the HPFA index show a significantly better preservation of the organic matter stored in thermokarst deposits compared to Yedoma deposits. The CPI data suggest less degradation of the organic matter from both deposits, with a higher value for Yedoma organic matter. As the interquartile ranges of the proxies mostly over-lap, we interpret this as indicating comparable quality for further decomposition for both kinds of deposits with likely better thermokarst organic-matter quality. Supported by principal component analyses, the sediment parameters and quality proxies of Yedoma and thermokarst deposits could not be unambiguously separated from each other. This revealed that the organic-matter vulnerability is heterogeneous and depends on different decomposition trajectories and the previous decomposition and preservation history. Elucidating this was one of the major new contributions of our multiproxy study. With the addition of biomarker data, it was possible to show that permafrost organic-matter degradation likely occurs via a combination of (uncompleted) degradation cycles or a cascade of degradation steps rather than as a linear function of age or sediment facies. We conclude that the amount of organic matter in the studied sediments is high for mineral soils and of good quality and therefore susceptible to future decomposition. The lack of depth trends shows that permafrost acts like a giant freezer, preserving the constant quality of ancient organic matter. When undecomposed Yedoma organic matter is mobilized via thermokarst processes, the fate of this carbon depends largely on the environmental conditions; the carbon could be preserved in an undecomposed state till refreezing occurs. If modern input has occurred, thermokarst organic matter could be of a better quality for future microbial decomposition than that found in Yedoma deposits. Y1 - 2015 U6 - https://doi.org/10.5194/bg-12-2227-2015 SN - 1726-4170 SN - 1726-4189 VL - 12 IS - 7 SP - 2227 EP - 2245 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Palagushkina, Olga A1 - Wetterich, Sebastian A1 - Biskaborn, Boris K. A1 - Nazarova, Larisa B. A1 - Schirrmeister, Lutz A1 - Lenz, Josefine A1 - Schwamborn, Georg A1 - Grosse, Guido T1 - Diatom records and tephra mineralogy in pingo deposits of Seward Peninsula, Alaska JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - Vast areas of the terrestrial Subarctic and Arctic are underlain by permafrost. Landscape evolution is therefore largely controlled by climate-driven periglacial processes. The response of the frozen ground to late Quaternary warm and cold stages is preserved in permafrost sequences, and deducible by multi-proxy palaeoenvironmental approaches. Here, we analyse radiocarbon-dated mid-Wisconsin Interstadial and Holocene lacustrine deposits preserved in the Kit-1 pingo permafrost sequence combined with water and surface sediment samples from nine modern water bodies on Seward Peninsula (NW Alaska) to reconstruct thermokarst dynamics and determine major abiotic factors that controlled the aquatic ecosystem variability. Our methods comprise taxonomical diatom analyses as well as Detrended Correspondence Analysis (DCA) and Redundancy Analysis (RDA). Our results show, that the fossil diatom record reflects thermokarst lake succession since about 42 C-14 kyr BP. Different thermolcarst lake stages during the mid-Wisconsin Interstadial, the late Wisconsin and the early Holocene are mirrored by changes in diatom abundance, diversity, and ecology. We interpret the taxonomical changes in the fossil diatom assemblages in combination with both modern diatom data from surrounding ponds and existing micropalaeontological, sedimentological and mineralogical data from the pingo sequence. A diatom based quantitative reconstruction of lake water pH indicates changing lake environments during mid-Wisconsin to early Holocene stages. Mineralogical analyses indicate presence of tephra fallout and its impact on fossil diatom communities. Our comparison of modern and fossil diatom communities shows the highest floristic similarity of modern polygon ponds to the corresponding initial (shallow water) development stages of thermolcarst lakes. We conclude, that mid-Wisconsin thermokarst processes in the study area could establish during relatively warm interstadial climate conditions accompanied by increased precipitation due to approaching coasts, while still high continentality and hence high seasonal temperature gradients led to warm summers in the central part of Beringia. (C) 2017 Elsevier B.V. All rights reserved. KW - Microalgae assemblages KW - Palaeoenvironments KW - Thermokarst KW - Late Quaternary KW - Permafrost Y1 - 2017 U6 - https://doi.org/10.1016/j.palaeo.2017.04.006 SN - 0031-0182 SN - 1872-616X VL - 479 SP - 1 EP - 15 PB - Elsevier CY - Amsterdam ER -