TY - THES A1 - Schindler, Sven T1 - Honeypot Architectures for IPv6 Networks Y1 - 2016 ER - TY - JOUR A1 - Hagen, Sven A1 - Baumann, Tobias A1 - Wagner, Hanna J. A1 - Morath, Volker A1 - Kaufmann, Beate A1 - Fischer, Adrian A1 - Bergmann, Stefan A1 - Schindler, Patrick A1 - Arndt, Katja Maren A1 - Mueller, Kristian M. T1 - Modular adeno-associated virus (rAAV) vectors used for cellular virus-directed enzyme prodrug therapy JF - Scientific reports N2 - The pre-clinical and clinical development of viral vehicles for gene transfer increased in recent years, and a recombinant adeno-associated virus (rAAV) drug took center stage upon approval in the European Union. However, lack of standardization, inefficient purification methods and complicated retargeting limit general usability. We address these obstacles by fusing rAAV-2 capsids with two modular targeting molecules (DARPin or Affibody) specific for a cancer cell-surface marker (EGFR) while simultaneously including an affinity tag (His-tag) in a surface-exposed loop. Equipping these particles with genes coding for prodrug converting enzymes (thymidine kinase or cytosine deaminase) we demonstrate tumor marker specific transduction and prodrug-dependent apoptosis of cancer cells. Coding terminal and loop modifications in one gene enabled specific and scalable purification. Our genetic parts for viral production adhere to a standardized cloning strategy facilitating rapid prototyping of virus directed enzyme prodrug therapy (VDEPT). Y1 - 2014 U6 - https://doi.org/10.1038/srep03759 SN - 2045-2322 VL - 4 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Moldenhawer, Ted A1 - Moreno, Eduardo A1 - Schindler, Daniel A1 - Flemming, Sven A1 - Holschneider, Matthias A1 - Huisinga, Wilhelm A1 - Alonso, Sergio A1 - Beta, Carsten T1 - Spontaneous transitions between amoeboid and keratocyte-like modes of migration JF - Frontiers in Cell and Developmental Biology N2 - The motility of adherent eukaryotic cells is driven by the dynamics of the actin cytoskeleton. Despite the common force-generating actin machinery, different cell types often show diverse modes of locomotion that differ in their shape dynamics, speed, and persistence of motion. Recently, experiments in Dictyostelium discoideum have revealed that different motility modes can be induced in this model organism, depending on genetic modifications, developmental conditions, and synthetic changes of intracellular signaling. Here, we report experimental evidence that in a mutated D. discoideum cell line with increased Ras activity, switches between two distinct migratory modes, the amoeboid and fan-shaped type of locomotion, can even spontaneously occur within the same cell. We observed and characterized repeated and reversible switchings between the two modes of locomotion, suggesting that they are distinct behavioral traits that coexist within the same cell. We adapted an established phenomenological motility model that combines a reaction-diffusion system for the intracellular dynamics with a dynamic phase field to account for our experimental findings. KW - cell migration KW - amoeboid motility KW - keratocytle-like motility KW - modes of KW - migration KW - D. discoideum KW - actin dynamics Y1 - 2022 U6 - https://doi.org/10.3389/fcell.2022.898351 SN - 2296-634X VL - 10 PB - Frontiers Media CY - Lausanne ER -