TY - GEN A1 - Kühn, Michael A1 - Kempka, Thomas A1 - de Lucia, Marco A1 - Scheck-Wenderoth, Magdalena T1 - Dissolved CO2 storage in geological formations with low pressure, low risk and large capacities T2 - Energy procedia N2 - Geological CO2 storage is a mitigation technology to reduce CO2 emissions from fossil fuel combustion. However, major concerns are the pressure increase and saltwater displacement in the mainly targeted deep groundwater aquifers due to injection of supercritical CO2. The suggested solution is storage of CO2 exclusively in the dissolved state. In our exemplary regional case study of the North East German Basin based on a highly resolved temperature and pressure distribution model and a newly developed reactive transport coupling, we have quantified that 4.7 Gt of CO2 can be stored in solution compared to 1.5 Gt in the supercritical state. KW - carbon dioxide KW - dissolved KW - storage capacity KW - numerical simulation KW - saline aquifer KW - Buntsandstein Y1 - 2017 U6 - https://doi.org/10.1016/j.egypro.2017.03.1607 SN - 1876-6102 VL - 114 SP - 4722 EP - 4727 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Cacace, Mauro A1 - Kaiser, Bjoern Onno A1 - Lewerenz, Bjoern A1 - Scheck-Wenderoth, Magdalena T1 - Geothermal energy in sedimentary basins : what we can learn from regional numerical models N2 - Understanding the interactions between the different processes that control the geothermal and fluid flow fields in sedimentary basins is crucial for exploitation of geothermal energy. Numerical models provide predictive and feasible information for a correct assessment of geothermal resources especially in areas where data acquisition is demanding. Here, we present results from numerical efforts to characterize the thermal structure and its interaction with the fluid system for the area of the North East German Basin (NEGB). The relative impact of the different (diffusive and advective) processes affecting the hydrothermal setting of the basin are investigated by means of three- dimensional numerical simulations. Lithospheric-scale numerical models are evaluated to understand the specific thermal signature of the relevant factors influencing the present-day conductive geothermal field in the NEGB. Shallow and deep structural controls on the thermal configuration of the basin are addressed and quantified. Interaction between the resulting thermal field and the active fluid system is investigated by means of three-dimensional simulations of coupled fluid flow and heat transport. Factors influencing stability and reliability of modeling predictions are discussed. The main effort is to build a physically consistent model for the basin which integrates the impacts of thermal gradients on the regional fluid regime and their coupling with the main geological units defining the basin. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/00092819 U6 - https://doi.org/10.1016/j.chemer.2010.05.017 SN - 0009-2819 ER - TY - JOUR A1 - Kaiser, Björn Onno A1 - Cacace, Mauro A1 - Scheck-Wenderoth, Magdalena T1 - 3D coupled fluid and heat transport simulations of the Northeast German Basin and their sensitivity to the spatial discretization - different sensitivities for different mechanisms of heat transport JF - Environmental earth sciences N2 - Based on a numerical model of the Northeast German Basin (NEGB), we investigate the sensitivity of the calculated thermal field as resulting from heat conduction, forced and free convection in response to consecutive horizontal and vertical mesh refinements. Our results suggest that computational findings are more sensitive to consecutive horizontal mesh refinements than to changes in the vertical resolution. In addition, the degree of mesh sensitivity depends strongly on the type of the process being investigated, whether heat conduction, forced convection or free thermal convection represents the active heat driver. In this regard, heat conduction exhibits to be relative robust to imposed changes in the spatial discretization. A systematic mesh sensitivity is observed in areas where forced convection promotes an effective role in shorten the background conductive thermal field. In contrast, free thermal convection is to be regarded as the most sensitive heat transport process as demonstrated by non-systematic changes in the temperature field with respect to imposed changes in the model resolution. KW - Mesh convergence KW - Conduction KW - Advection KW - Convection KW - Thermal field KW - Northeast German Basin Y1 - 2013 U6 - https://doi.org/10.1007/s12665-013-2249-7 SN - 1866-6280 SN - 1866-6299 VL - 70 IS - 8 SP - 3643 EP - 3659 PB - Springer CY - New York ER - TY - INPR A1 - Scheck-Wenderoth, Magdalena A1 - Schmeißer, Dieter A1 - Mutti, Maria A1 - Kolditz, Olaf A1 - Hünges, Ernst A1 - Schultz, Hans-Martin A1 - Liebscher, Axel A1 - Bock, Michaela T1 - Geoenergy - new concepts for utilization of geo-reservoirs as potential energy sources T2 - Environmental earth sciences Y1 - 2013 U6 - https://doi.org/10.1007/s12665-013-2877-y SN - 1866-6280 SN - 1866-6299 VL - 70 IS - 8 SP - 3427 EP - 3431 PB - Springer CY - New York ER - TY - GEN A1 - Sippel, Judith A1 - Meeßen, Christian A1 - Cacace, Mauro A1 - Mechie, James A1 - Fishwick, Stewart A1 - Heine, Christian A1 - Scheck-Wenderoth, Magdalena A1 - Strecker, Manfred T1 - The Kenya rift revisited BT - insights into lithospheric strength through data-driven 3-D gravity and thermal modelling T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - We present three-dimensional (3-D) models that describe the present-day thermal and rheological state of the lithosphere of the greater Kenya rift region aiming at a better understanding of the rift evolution, with a particular focus on plume-lithosphere interactions. The key methodology applied is the 3-D integration of diverse geological and geophysical observations using gravity modelling. Accordingly, the resulting lithospheric-scale 3-D density model is consistent with (i) reviewed descriptions of lithological variations in the sedimentary and volcanic cover, (ii) known trends in crust and mantle seismic velocities as revealed by seismic and seismological data and (iii) the observed gravity field. This data-based model is the first to image a 3-D density configuration of the crystalline crust for the entire region of Kenya and northern Tanzania. An upper and a basal crustal layer are differentiated, each composed of several domains of different average densities. We interpret these domains to trace back to the Precambrian terrane amalgamation associated with the East African Orogeny and to magmatic processes during Mesozoic and Cenozoic rifting phases. In combination with seismic velocities, the densities of these crustal domains indicate compositional differences. The derived lithological trends have been used to parameterise steady-state thermal and rheological models. These models indicate that crustal and mantle temperatures decrease from the Kenya rift in the west to eastern Kenya, while the integrated strength of the lithosphere increases. Thereby, the detailed strength configuration appears strongly controlled by the complex inherited crustal structure, which may have been decisive for the onset, localisation and propagation of rifting. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 644 KW - east-african rift KW - cenozoic Turkana depression KW - seismic velocity structure KW - Northern Kenya KW - upper-mantle KW - Mozambique belt KW - continental lithosphere KW - crustal structure KW - structure beneath KW - wave tomography Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418221 SN - 1866-8372 IS - 644 SP - 45 EP - 81 ER - TY - GEN A1 - Ziegler, Moritz O. A1 - Heidbach, Oliver A1 - Reinecker, John A1 - Przybycin, Anna M. A1 - Scheck-Wenderoth, Magdalena T1 - A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The knowledge of the contemporary in situ stress state is a key issue for safe and sustainable subsurface engineering. However, information on the orientation and magnitudes of the stress state is limited and often not available for the areas of interest. Therefore 3-D geomechanical-numerical modelling is used to estimate the in situ stress state and the distance of faults from failure for application in subsurface engineering. The main challenge in this approach is to bridge the gap in scale between the widely scattered data used for calibration of the model and the high resolution in the target area required for the application. We present a multi-stage 3-D geomechanical-numerical approach which provides a state-of-the-art model of the stress field for a reservoir-scale area from widely scattered data records. Therefore, we first use a large-scale regional model which is calibrated by available stress data and provides the full 3-D stress tensor at discrete points in the entire model volume. The modelled stress state is used subsequently for the calibration of a smaller-scale model located within the large-scale model in an area without any observed stress data records. We exemplify this approach with two-stages for the area around Munich in the German Molasse Basin. As an example of application, we estimate the scalar values for slip tendency and fracture potential from the model results as measures for the criticality of fault reactivation in the reservoir-scale model. The modelling results show that variations due to uncertainties in the input data are mainly introduced by the uncertain material properties and missing S-Hmax magnitude estimates needed for a more reliable model calibration. This leads to the conclusion that at this stage the model's reliability depends only on the amount and quality of available stress information rather than on the modelling technique itself or on local details of the model geometry. Any improvements in modelling and increases in model reliability can only be achieved using more high-quality data for calibration. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 556 KW - in-situ stress KW - induced seismicity KW - geothermal-reservoirs KW - geomechanical model KW - fault reactivation KW - alpine foreland KW - map project KW - km depth KW - orientation KW - system Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409806 SN - 1866-8372 IS - 556 ER - TY - JOUR A1 - Ibarra, Federico A1 - Liu, Sibiao A1 - Meeßen, Christian A1 - Prezzi, Claudia Beatriz A1 - Bott, Judith A1 - Scheck-Wenderoth, Magdalena A1 - Sobolev, Stephan Vladimir A1 - Strecker, Manfred T1 - 3D data-derived lithospheric structure of the Central Andes and its implications for deformation: Insights from gravity and geodynamic modelling JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - We present a new three-dimensional density model of the Central Andes characterizing the structure and composition of the lithosphere together with a geodynamic simulation subjected to continental intraplate shortening. The principal aim of this study is to assess the link between heterogeneities in the lithosphere and different deformation patterns and styles along the orogen-foreland system of the Central Andes. First, we performed a 3D integration of new geological and geophysical data with previous models through forward modelling of Bouguer anomalies. Subsequently, a geodynamic model was set-up and parametrized from the previously obtained 3D structure and composition. We do not find a unambigous correlation between the resulting density configuration and terrane boundaries proposed by other authors. Our models reproduce the observed Bouguer anomaly and deformation patterns in the foreland. We find that thin-skinned deformation in the Subandean fold-and thrust belt is controlled by a thick sedimentary layer and coeval underthrusting of thin crust of the foreland beneath the thick crust of the Andean Plateau. In the adjacent thick-skinned deformation province of the inverted Cretaceous extensional Santa Barbara System sedimentary strata are much thinner and crustal thickness transitions from greater values in the Andean to a more reduced thickness in the foreland. Our results show that deformation processes occur where the highest gradients of lithospheric strength are present between the orogen and the foreland, thus suggesting a spatial correlation between deformation and lithospheric strength. KW - Central Andes KW - Lithospheric structure KW - Gravity modelling KW - Geodynamic modelling KW - Deformation Y1 - 2019 U6 - https://doi.org/10.1016/j.tecto.2019.06.025 SN - 0040-1951 SN - 1879-3266 VL - 766 SP - 453 EP - 468 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Sippel, Judith A1 - Meessen, Christian A1 - Cacace, Mauro A1 - Mechie, James A1 - Fishwick, Stewart A1 - Heine, Christian A1 - Scheck-Wenderoth, Magdalena A1 - Strecker, Manfred T1 - The Kenya rift revisited BT - insights into lithospheric strength through data-driven 3-D gravity and thermal modelling JF - Solid earth N2 - We present three-dimensional (3-D) models that describe the present-day thermal and rheological state of the lithosphere of the greater Kenya rift region aiming at a better understanding of the rift evolution, with a particular focus on plume-lithosphere interactions. The key methodology applied is the 3-D integration of diverse geological and geophysical observations using gravity modelling. Accordingly, the resulting lithospheric-scale 3-D density model is consistent with (i) reviewed descriptions of lithological variations in the sedimentary and volcanic cover, (ii) known trends in crust and mantle seismic velocities as revealed by seismic and seismological data and (iii) the observed gravity field. This data-based model is the first to image a 3-D density configuration of the crystalline crust for the entire region of Kenya and northern Tanzania. An upper and a basal crustal layer are differentiated, each composed of several domains of different average densities. We interpret these domains to trace back to the Precambrian terrane amalgamation associated with the East African Orogeny and to magmatic processes during Mesozoic and Cenozoic rifting phases. In combination with seismic velocities, the densities of these crustal domains indicate compositional differences. The derived lithological trends have been used to parameterise steady-state thermal and rheological models. These models indicate that crustal and mantle temperatures decrease from the Kenya rift in the west to eastern Kenya, while the integrated strength of the lithosphere increases. Thereby, the detailed strength configuration appears strongly controlled by the complex inherited crustal structure, which may have been decisive for the onset, localisation and propagation of rifting. Y1 - 2017 U6 - https://doi.org/10.5194/se-8-45-2017 SN - 1869-9510 SN - 1869-9529 VL - 8 SP - 45 EP - 81 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Cacace, Mauro A1 - Blöcher, Guido A1 - Watanabe, Norihiro A1 - Möck, Inga A1 - Börsing, Nele A1 - Scheck-Wenderoth, Magdalena A1 - Kolditz, Olaf A1 - Hünges, Ernst T1 - Modelling of fractured carbonate reservoirs - outline of a novel technique via a case study from the Molasse Basin, southern Bavaria, Germany JF - Environmental earth sciences N2 - Fluid flow in low-permeable carbonate rocks depends on the density of fractures, their interconnectivity and on the formation of fault damage zones. The present-day stress field influences the aperture hence the transmissivity of fractures whereas paleostress fields are responsible for the formation of faults and fractures. In low-permeable reservoir rocks, fault zones belong to the major targets. Before drilling, an estimate for reservoir productivity of wells drilled into the damage zone of faults is therefore required. Due to limitations in available data, a characterization of such reservoirs usually relies on the use of numerical techniques. The requirements of these mathematical models encompass a full integration of the actual fault geometry, comprising the dimension of the fault damage zone and of the fault core, and the individual population with properties of fault zones in the hanging and foot wall and the host rock. The paper presents both the technical approach to develop such a model and the property definition of heterogeneous fault zones and host rock with respect to the current stress field. The case study describes a deep geothermal reservoir in the western central Molasse Basin in southern Bavaria, Germany. Results from numerical simulations indicate that the well productivity can be enhanced along compressional fault zones if the interconnectivity of fractures is lateral caused by crossing synthetic and antithetic fractures. The model allows a deeper understanding of production tests and reservoir properties of faulted rocks. KW - Fractured carbonate geothermal reservoirs KW - Fault core and damage zone KW - In situ stress field KW - 3D mesh generator KW - OpenGeosys KW - Well productivity Y1 - 2013 U6 - https://doi.org/10.1007/s12665-013-2402-3 SN - 1866-6280 SN - 1866-6299 VL - 70 IS - 8 SP - 3585 EP - 3602 PB - Springer CY - New York ER - TY - JOUR A1 - Cherubini, Yvonne A1 - Cacace, Mauro A1 - Blöcher, Guido A1 - Scheck-Wenderoth, Magdalena T1 - Impact of single inclined faults on the fluid flow and heat transport - results from 3-D finite element simulations JF - Environmental earth sciences N2 - The impact of inclined faults on the hydrothermal field is assessed by adding simplified structural settings to synthetic models. This study is innovative in carrying out numerical simulations because it integrates the real 3-D nature of flow influenced by a fault in a porous medium, thereby providing a useful tool for complex geothermal modelling. The 3-D simulations for the coupled fluid flow and heat transport processes are based on the finite element method. In the model, one geological layer is dissected by a dipping fault. Sensitivity analyses are conducted to quantify the effects of the fault's transmissivity on the fluid flow and thermal field. Different fault models are compared with a model where no fault is present to evaluate the effect of varying fault transmissivity. The results show that faults have a significant impact on the hydrothermal field. Varying either the fault zone width or the fault permeability will result in relevant differences in the pressure, velocity and temperature field. A linear relationship between fault zone width and fluid velocity is found, indicating that velocities increase with decreasing widths. The faults act as preferential pathways for advective heat transport in case of highly transmissive faults, whereas almost no fluid may be transported through poorly transmissive faults. KW - Hydrothermal field KW - 3-D numerical simulations KW - Inclined faults KW - Fault zone KW - Coupled fluid flow and heat transport KW - Finite elements Y1 - 2013 U6 - https://doi.org/10.1007/s12665-012-2212-z SN - 1866-6280 SN - 1866-6299 VL - 70 IS - 8 SP - 3603 EP - 3618 PB - Springer CY - New York ER -