TY - JOUR A1 - Miedema, Piter S. A1 - Thielemann-Kühn, Nele A1 - Calafell, Irati Alonso A1 - Schüßler-Langeheine, Christian A1 - Beye, Martin T1 - Strain analysis from M-edge resonant inelastic X-ray scattering of nickel oxide films JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Electronic structure modifications due to strain are an effective method for tailoring nano-scale functional materials. Demonstrated on nickel oxide (NiO) thin films, Resonant Inelastic X-ray Scattering (RIXS) at the transition-metal M-2,M-3-edge is shown to be a powerful tool for measuring the electronic structure modification due to strain in the near-surface region. Analyses from the M-2,M-3-edge RIXS in comparison with dedicated crystal field multiplet calculations show distortions in 40 nm NiO grown on a magnesium oxide (MgO) substrate (NiO/MgO) similar to those caused by surface relaxation of bulk NiO. The films of 20 and 10 nm NiO/MgO show slightly larger differences from bulk NiO. Quantitatively, the NiO/MgO samples all are distorted from perfect octahedral (O-h) symmetry with a tetragonal parameter Ds of about -0.1 eV, very close to the Ds distortion from octahedral (O-h) symmetry parameter of -0.11 eV obtained for the surface-near region from a bulk NiO crystal. Comparing the spectra of a 20 nm film of NiO grown on a 20 nm magnetite (Fe3O4) film on a MgO substrate (NiO/Fe3O4/MgO) with the calculated multiplet analyses, the distortion parameter Ds appears to be closer to zero, showing that the surface-near region of this templated film is less distorted from O-h symmetry than the surface-near region in bulk NiO. Finally, the potential of M-2,M-3-edge RIXS for other investigations of strain on electronic structure is discussed. Y1 - 2019 U6 - https://doi.org/10.1039/c9cp03593a SN - 1463-9076 SN - 1463-9084 VL - 21 IS - 38 SP - 21596 EP - 21602 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Beye, Martin A1 - Wernet, Ph. A1 - Schüßler-Langeheine, Christian A1 - Föhlisch, Alexander T1 - Time resolved resonant inelastic X-ray scattering: a supreme tool to understand dynamics in solids and molecules JF - Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy N2 - Dynamics in materials typically involve different degrees of freedom, like charge, lattice, orbital and spin in a complex interplay. Time-resolved resonant inelastic X-ray scattering (RIXS) as a highly selective tool can provide unique insight and follow the details of dynamical processes while resolving symmetries, chemical and charge states, momenta, spin configurations, etc. In this paper, we review examples where the intrinsic scattering duration time is used to study femtosecond phenomena. Free-electron lasers access timescales starting in the sub-ps range through pump-probe methods and synchrotrons study the time scales longer than tens of ps. In these examples, time-resolved resonant inelastic X-ray scattering is applied to solids as well as molecular systems. KW - Resonant inelastic X-ray scattering KW - Ultrafast spectroscopy KW - Phase transitions KW - Molecular dynamics Y1 - 2013 U6 - https://doi.org/10.1016/j.elspec.2013.04.013 SN - 0368-2048 VL - 188 IS - 3 SP - 172 EP - 182 PB - Elsevier CY - Amsterdam ER -