TY - JOUR A1 - Saparin, P. I. A1 - Thomsen, J. S. A1 - Prohaska, Steffen A1 - Zaikin, Alexei A1 - Kurths, Jürgen A1 - Hege, H. C. A1 - Gowin, W. T1 - Quantification of spatial structure of human proximal tibial bone biopsies using 3D measures of complexity N2 - Changes in trabecular bone composition during development of osteoporosis are used as a model for bone loss in microgravity conditions during a space flight. Symbolic dynamics and measures of complexity are proposed and applied to assess quantitatively the structural composition of bone tissue from 3D data sets of human tibia bone biopsies acquired by a micro-CT scanner. In order to justify the newly proposed approach, the measures of complexity of the bone architecture were compared with the results of traditional 2D bone histomorphometry. The proposed technique is able to quantify the structural loss of the bone tissue and may help to diagnose and to monitor changes in bone structure of patients on Earth as well as of the space-flying personnel. © 2005 Elsevier Ltd. All rights reserved Y1 - 2005 SN - 0094-5765 ER - TY - INPR A1 - Kurths, Jürgen A1 - Voss, A. A1 - Witt, Annette A1 - Saparin, P. A1 - Kleiner, H. J. A1 - Wessel, Niels T1 - Quantitative analysis of heart rate variability N2 - In the modern industrialized countries every year several hundred thousands of people die due to the sudden cardiac death. The individual risk for this sudden cardiac death cannot be defined precisely by common available, non-invasive diagnostic tools like Holter-monitoring, highly amplified ECG and traditional linear analysis of heart rate variability (HRV). Therefore, we apply some rather unconventional methods of nonlinear dynamics to analyse the HRV. Especially, some complexity measures that are basing on symbolic dynamics as well as a new measure, the renormalized entropy, detect some abnormalities in the HRV of several patients who have been classified in the low risk group by traditional methods. A combination of these complexity measures with the parameters in the frequency domain seems to be a promising way to get a more precise definition of the individual risk. These findings have to be validated by a representative number of patients. T3 - NLD Preprints - 5 Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-13470 ER - TY - JOUR A1 - Saparin, Peter A1 - Kurths, Jürgen A1 - Gowin, P. A1 - Felsenberg, D. T1 - Die quantitative Beurteilung trabeculärer Knochenstrukturen der Lendenwirbelkörper durch Meßmethoden der nicht-linearen Dynamik Y1 - 1997 ER - TY - JOUR A1 - Kopitzki, K. A1 - Warnke, P. C. A1 - Saparin, Peter A1 - Kurths, Jürgen A1 - Timmer, Jens T1 - Comment on "Kullback-Leibler and renormalized entropies: Applications to electroencephalograms of epilepsy patients" Y1 - 2002 ER -