TY - JOUR A1 - Senge, Mathias O. A1 - Hatscher, S. S. A1 - Wiehe, A. A1 - Dahms, Katja A1 - Kelling, Alexandra T1 - The dithianyl group as a synthon in porphyrin chemistry : condensation reactions and preparation of formylporphyrins under basic conditions Y1 - 2004 SN - 0002-7863 ER - TY - JOUR A1 - Ryppa, C. A1 - Senge, Mathias O. A1 - Hatscher, S. S. A1 - Kleinpeter, Erich A1 - Wacker, Philipp A1 - Schilde, Uwe A1 - Wiehe, A. T1 - Synthesis of mono- and disubstituted porphyrins : A- and 5,10-A(2)-type systems N2 - General syntheses have been developed for meso-substituted porphyrins with one or two substituents in the 5,10- positions and no beta substituents. 5-Substituted porphyrins with only one meso substituent are easily prepared by an acid-catalyzed condensation of dipyrromethane, pyrrole-2-carbaldehyde. and an appropriate aldehyde using a "[2+1+1]" approach. Similarly, 5,10-disubstituted porphyrins are accessible by simple condensation of unsubstituted tripyrrane with pyrrole and various aldehydes using a "[3+1]" approach. The yields for these reactions are low to moderate and additional formation of either di- or mono-substituted porphyrins due to scrambling of the intermediates is observed. However, the reactions can be performed quite easily and the desired target compounds are easily removed due to large differences in solubility. A complementary and more selective synthesis involves the use of organolithium reagents for SNAr reactions. Reaction of in situ generated porphyrin (porphine) with 1.1-8 equivalents of RLi gave the monosubstituted porphyrins, while reaction with 3-6 equivalents of RLi gave the 5,10-disubstituted porphyrins in yields ranging from 43 to 90%. These hitherto almost inaccessible compounds complete the series of different homologues of A-, 5,15-A(2)-, 5,10-A(2)-, A(3)-, and A(4)-type porphyrin's and allow an investigation of the gradual influence of type, number, and regiochemical arrangement of substituents on the properties of meso-substituted porphyrins. They also present important starting materials for the synthesis of ABCD porphyrins and are potential synthons for supramolecular materials requiring specific substituent orientations Y1 - 2005 SN - 0947-6539 ER - TY - JOUR A1 - Senge, Mathias O. A1 - Shaker, Yasser M. A1 - Pintea, Monica A1 - Ryppa, Claudia A1 - Hatscher, Sabine S. A1 - Ryan, Aoife A1 - Sergeeva, Yulia T1 - Synthesis of meso-substituted ABCD-Type porphyrins by functionalization reactions N2 - Considerable progress has been made in recent years in the search for synthetic methods leading to functionalized porphyrins, especially for modification of either the beta- or meso positions. For the latter, total synthesis based on condensation methods or partial synthesis through functionalization of preformed porphyrin have emerged as possible methods. The increasing number of possible technical and medicinal applications for unsymmetrically meso-substituted porphyrins requires straightforward methods for the preparation of the so-called ABCD-porphyrins, i.e., porphyrins with up to four different meso substituents. Here, we describe new strategies for the synthesis of ABCD-type porphyrins based on porphyrin reactions with organolithium reagents and the use of Pd-catalyzed coupling reactions. With the whole repertoire of contemporary functionalization methods, a comprehensive analysis and comparison of the various strategies for A-, AB-, A(2)B-, ABC-, A(2)BC- and ABCD-type porphyrins is given. In addition, we report on the synthesis of new functionalized derivatives for some of these porphyrin classes. In practical terms and taking an applied-science- oriented approach, the synthesis of unsymmetrically meso-substituted porphyrins is best accomplished by a combination of well-developed condensation methods with subsequent functionalization. by organolithium compounds or transition-metal- catalyzed coupling protocols. The methods described are suitable for the preparation of porphyrins for many divergent applications ranging over amphiphilic porphyrins for photodynamic therapy, push-pull systems for optical applications and chiral systems useful in catalysis to donor-acceptor systems suitable for electron-transfer studies. Y1 - 2010 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/27380/ U6 - https://doi.org/10.1002/ejoc.200901113 SN - 1434-193X ER -