TY - JOUR A1 - Blasius, Bernd A1 - Rudolf, Lars A1 - Weithoff, Guntram A1 - Gaedke, Ursula A1 - Fussmann, Gregor F. T1 - Long-term cyclic persistence in an experimental predator-prey system JF - Nature : the international weekly journal of science N2 - Predator-prey cycles rank among the most fundamental concepts in ecology, are predicted by the simplest ecological models and enable, theoretically, the indefinite persistence of predator and prey(1-4). However, it remains an open question for how long cyclic dynamics can be self-sustained in real communities. Field observations have been restricted to a few cycle periods(5-8) and experimental studies indicate that oscillations may be short-lived without external stabilizing factors(9-19). Here we performed microcosm experiments with a planktonic predator-prey system and repeatedly observed oscillatory time series of unprecedented length that persisted for up to around 50 cycles or approximately 300 predator generations. The dominant type of dynamics was characterized by regular, coherent oscillations with a nearly constant predator-prey phase difference. Despite constant experimental conditions, we also observed shorter episodes of irregular, non-coherent oscillations without any significant phase relationship. However, the predator-prey system showed a strong tendency to return to the dominant dynamical regime with a defined phase relationship. A mathematical model suggests that stochasticity is probably responsible for the reversible shift from coherent to non-coherent oscillations, a notion that was supported by experiments with external forcing by pulsed nutrient supply. Our findings empirically demonstrate the potential for infinite persistence of predator and prey populations in a cyclic dynamic regime that shows resilience in the presence of stochastic events. Y1 - 2019 U6 - https://doi.org/10.1038/s41586-019-1857-0 SN - 0028-0836 SN - 1476-4687 VL - 577 IS - 7789 SP - 226 EP - 230 PB - Nature Publ. Group CY - London ER - TY - THES A1 - Rudolf, Lars T1 - Population dynamics in theory and experiment : an investigation of species interactions on different scales of complexity Y1 - 2008 ER -