TY - JOUR A1 - Rousseau, Batiste A1 - Erard, Stéphane A1 - Beck, P. A1 - Quirico, Eric A1 - Schmitt, B. A1 - Brissaud, O. A1 - Montes-Hernandez, G. A1 - Capaccioni, F. A1 - Filacchione, Gianrico A1 - Bockelee-Morvan, Dominique A1 - Leyrat, C. A1 - Ciarniello, M. A1 - Raponi, Andrea A1 - Kappel, David A1 - Arnold, G. A1 - Moroz, L. V. A1 - Palomba, Ernesto A1 - Tosi, Federico T1 - Laboratory simulations of the Vis-NIR spectra of comet 67P using sub-mu m sized cosmochemical analogues JF - Icarus : international journal of solar system studies N2 - Laboratory spectral measurements of relevant analogue materials were performed in the framework of the Rosetta mission in order to explain the surface spectral properties of comet 67P. Fine powders of coal, iron sulphides, silicates and their mixtures were prepared and their spectra measured in the Vis-IR range. These spectra are compared to a reference spectrum of 67P nucleus obtained with the VIRTIS/Rosetta instrument up to 2.7 mu m, excluding the organics band centred at 3.2 mu m. The species used are known to be chemical analogues for cometary materials which could be present at the surface of 67P. Grain sizes of the powders range from tens of nanometres to hundreds of micrometres. Some of the mixtures studied here actually reach the very low reflectance level observed by VIRTIS on 67P. The best match is provided by a mixture of sub-micron coal, pyrrhotite, and silicates. Grain sizes are in agreement with the sizes of the dust particles detected by the GIADA, MIDAS and COSIMA instruments on board Rosetta. The coal used in the experiment is responsible for the spectral slope in the visible and infrared ranges. Pyrrhotite, which is strongly absorbing, is responsible for the low albedo observed in the NIR. The darkest components dominate the spectra, especially within intimate mixtures. Depending on sample preparation, pyrrhotite can coat the coal and silicate aggregates. Such coating effects can affect the spectra as much as particle size. In contrast, silicates seem to play a minor role. (c) 2017 Elsevier Inc. All rights reserved. KW - Comets KW - Comets nucleus KW - Comets composition KW - Spectroscopy KW - Experimental techniques Y1 - 2018 U6 - https://doi.org/10.1016/j.icarus.2017.10.015 SN - 0019-1035 SN - 1090-2643 VL - 306 SP - 306 EP - 318 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Tosi, Federico A1 - Capaccioni, F. A1 - Capria, M. T. A1 - Mottola, Stefano A1 - Zinzi, A. A1 - Ciarniello, M. A1 - Filacchione, G. A1 - Hofstadter, M. A1 - Fonti, S. A1 - Formisano, M. A1 - Kappel, David A1 - Kührt, E. A1 - Leyrat, C. A1 - Vincent, J-B A1 - Arnold, G. A1 - De Sanctis, M. C. A1 - Longobardo, Andrea A1 - Palomba, E. A1 - Raponi, A. A1 - Rousseau, Batiste A1 - Schmitt, Bernard A1 - Barucci, Maria Antonietta A1 - Bellucci, Giancarlo A1 - Benkhoff, Johannes A1 - Bockelee-Morvan, D. A1 - Cerroni, P. A1 - Combe, J-Ph A1 - Despan, D. A1 - Erard, Stéphane A1 - Mancarella, F. A1 - McCord, T. B. A1 - Migliorini, Alessandra A1 - Orofino, V A1 - Piccioni, G. T1 - The changing temperature of the nucleus of comet 67P induced by morphological and seasonal effects JF - Nature astronomy N2 - Knowledge of the surface temperature distribution on a comet’s nucleus and its temporal evolution at different timescales is key to constraining its thermophysical properties and understanding the physical processes that take place at and below the surface. Here we report on time-resolved maps of comet 67P/Churyumov–Gerasimenko retrieved on the basis of infrared data acquired by the Visible InfraRed and Thermal Imaging Spectrometer (VIRTIS) onboard the Rosetta orbiter in 2014, over a roughly two-month period in the pre-perihelion phase at heliocentric distances between 3.62 and 3.31 au from the Sun. We find that at a spatial resolution ≤15 m per pixel, the measured temperatures point out the major effect that self-heating, due to the complex shape of the nucleus, has on the diurnal temperature variation. The bilobate nucleus of comet 67P also induces daytime shadowing effects, which result in large thermal gradients. Over longer periods, VIRTIS-derived temperature values reveal seasonal changes driven by decreasing heliocentric distance combined with an increasing abundance of ice within the uppermost centimetre-thick layer, which implies the possibility of having a largely pristine nucleus interior already in the shallow subsurface Y1 - 2019 U6 - https://doi.org/10.1038/s41550-019-0740-0 SN - 2397-3366 VL - 3 IS - 7 SP - 649 EP - 658 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Ciarniello, Mauro A1 - Fulle, Marco A1 - Raponi, Andrea A1 - Filacchione, Gianrico A1 - Capaccioni, Fabrizio A1 - Rotundi, Alessandra A1 - Rinaldi, Giovanna A1 - Formisano, Michelangelo A1 - Magni, Gianfranco A1 - Tosi, Federico A1 - De Sanctis, Maria Cristina A1 - Capria, Maria Teresa A1 - Longobardo, Andrea A1 - Beck, Pierre A1 - Fornasier, Sonia A1 - Kappel, David A1 - Mennella, Vito A1 - Mottola, Stefano A1 - Rousseau, Batiste A1 - Arnold, Gabriele T1 - Macro and micro structures of pebble-made cometary nuclei reconciled by seasonal evolution JF - Nature astronomy N2 - Comets evolve due to sublimation of ices embedded inside porous dust, triggering dust emission (that is, erosion) followed by mass loss, mass redistribution and surface modifications. Surface changes were revealed by the Deep Impact and Stardust NExT missions for comet 9P/Tempel 1 (ref.(1)), and a full inventory of the processes modifying cometary nuclei was provided by Rosetta while it escorted comet 67P/Churyumov-Gerasimenko for approximately two years(2-4). Such observations also showed puzzling water-ice-rich spots that stood out as patches optically brighter and spectrally bluer than the average cometary surfaces(5-9). These are up to tens of metres large and indicate macroscopic compositional dishomogeneities apparently in contrast with the structural homogeneity above centimetre scales of pebble-made nuclei(10). Here we show that the occurrence of blue patches determines the seasonal variability of the nucleus colour(4,11,12) and gives insight into the internal structure of comets. We define a new model that links the centimetre-sized pebbles composing the nucleus(10) and driving cometary activity(13,14) to metre-sized water-ice-enriched blocks embedded in a drier matrix. The emergence of blue patches is due to the matrix erosion driven by CO2-ice sublimation that exposes the water-ice-enriched blocks, which in turn are eroded by water-ice sublimation when exposed to sunlight. Our model explains the observed seasonal evolution of the nucleus and reconciles the available data at micro (sub-centimetre) and macro (metre) scales. KW - Asteroids, comets and Kuiper belt KW - Planetary science Y1 - 2022 U6 - https://doi.org/10.1038/s41550-022-01625-y SN - 2397-3366 VL - 6 IS - 5 SP - 546 EP - 553 PB - Nature Research CY - Berlin ER -