TY - THES A1 - Raschke, Stefanie T1 - Characterization of selenium and copper in cell systems of the neurovascular unit T1 - Charakterisierung von Selen und Kupfer in Zellsystemen der neurovaskulären Einheit N2 - The trace elements, selenium (Se) and copper (Cu) play an important role in maintaining normal brain function. Since they have essential functions as cofactors of enzymes or structural components of proteins, an optimal supply as well as a well-defined homeostatic regulation are crucial. Disturbances in trace element homeostasis affect the health status and contribute to the incidence and severity of various diseases. The brain in particular is vulnerable to oxidative stress due to its extensive oxygen consumption and high energy turnover, among other factors. As components of a number of antioxidant enzymes, both elements are involved in redox homeostasis. However, high concentrations are also associated with the occurrence of oxidative stress, which can induce cellular damage. Especially high Cu concentrations in some brain areas are associated with the development and progression of neurodegenerative diseases such as Alzheimer's disease (AD). In contrast, reduced Se levels were measured in brains of AD patients. The opposing behavior of Cu and Se renders the study of these two trace elements as well as the interactions between them being particularly relevant and addressed in this work. N2 - Die Spurenelemente Selen (Se) und Kupfer (Cu) spielen eine wichtige Rolle bei der Aufrechterhaltung einer normalen Ge¬hirnfunktion. Da sie wesentliche Funktionen als Cofaktoren von Enzymen oder Strukturbestandteile von Proteinen haben, sind eine optimale Versorgung sowie eine genau definierte homöostatische Regulierung von entscheidender Bedeutung. Störungen der Spurenelement-homöostase beeinträchtigen den Gesund¬heitszustand und tragen zum Auftreten und zur Schwere verschiedener Krankheiten bei. Insbesondere das Gehirn ist aufgrund seines hohen Sauerstoffverbrauchs und seines hohen Energieumsatzes anfällig für oxi¬dativen Stress. Als Bestandteile einer Reihe von antioxidativen Enzymen sind beide Elemente an der Redox-Homöostase beteiligt. Hohe Konzentrationen werden jedoch auch mit dem Auftreten von oxidati¬vem Stress in Verbindung gebracht, der zu Zellschäden führen kann. Besonders hohe Cu-Konzentrationen in einigen Hirnregionen werden mit der Entwicklung und der Progression neurodegenerativer Erkran¬kungen wie Alzheimer in Verbindung gebracht. Im Gegensatz dazu wurden in den Gehirnen von Alzheimer-Patienten geringere Se-Konzentrationen gemessen. Das gegensätzliche Verhalten von Cu und Se verdeutlicht die Relevanz der Untersuchung dieser beiden Spurenelemente sowie deren Wechselwirkungen und wird in dieser Arbeit thematisiert. KW - selenium KW - copper KW - Selen KW - Kupfer KW - Blut-Hirn-Schranke KW - Neuronen KW - Astrozyten KW - blood-brain barrier KW - neurons KW - astrocytes Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-603666 ER - TY - JOUR A1 - Witt, Barbara A1 - Stiboller, Michael A1 - Raschke, Stefanie A1 - Friese, Sharleen A1 - Ebert, Franziska A1 - Schwerdtle, Tanja T1 - Characterizing effects of excess copper levels in a human astrocytic cell line with focus on oxidative stress markers JF - Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements, GMS N2 - Background: Being an essential trace element, copper is involved in diverse physiological processes. However, excess levels might lead to adverse effects. Disrupted copper homeostasis, particularly in the brain, has been associated with human diseases including the neurodegenerative disorders Wilson and Alzheimer?s disease. In this context, astrocytes play an important role in the regulation of the copper homeostasis in the brain and likely in the prevention against neuronal toxicity, consequently pointing them out as a potential target for the neurotoxicity of copper. Major toxic mechanisms are discussed to be directed against mitochondria probably via oxidative stress. However, the toxic potential and mode of action of copper in astrocytes is poorly understood, so far. Methods: In this study, excess copper levels affecting human astrocytic cell model and their involvement in the neurotoxic mode of action of copper, as well as, effects on the homeostasis of other trace elements (Mn, Fe, Ca and Mg) were investigated. Results: Copper induced substantial cytotoxic effects in the human astrocytic cell line following 48 h incubation (EC30: 250 ?M) and affected mitochondrial function, as observed via reduction of mitochondrial membrane potential and increased ROS production, likely originating from mitochondria. Moreover, cellular GSH metabolism was altered as well. Interestingly, not only cellular copper levels were affected, but also the homeostasis of other elements (Ca, Fe and Mn) were disrupted. Conclusion: One potential toxic mode of action of copper seems to be effects on the mitochondria along with induction of oxidative stress in the human astrocytic cell model. Moreover, excess copper levels seem to interact with the homeostasis of other essential elements such as Ca, Fe and Mn. Disrupted element homeostasis might also contribute to the induction of oxidative stress, likely involved in the onset and progression of neurodegenerative disorders. These insights in the toxic mechanisms will help to develop ideas and approaches for therapeutic strategies against copper-mediated diseases. KW - Copper KW - Astrocytes KW - Toxicity KW - Mitochondria KW - ROS KW - Trace elements Y1 - 2021 U6 - https://doi.org/10.1016/j.jtemb.2021.126711 SN - 1878-3252 VL - 65 PB - Elsevier CY - München ER - TY - JOUR A1 - Rohn, Isabelle A1 - Raschke, Stefanie A1 - Aschner, Michael A1 - Tuck, Simon A1 - Kuehnelt, Doris A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Treatment of caenorhabditis elegans with small selenium species enhances antioxidant defense systems JF - Molecular nutrition & food research : bioactivity, chemistry, immunology, microbiology, safety, technology N2 - ScopeSmall selenium (Se) species play a key role in Se metabolism and act as dietary sources of the essential trace element. However, they are redox-active and trigger pro- and antioxidant responses. As health outcomes are strongly species-dependent, species-specific characteristics of Se compounds are tested in vivo. Methods and resultsIn the model organism Caenorhabditis elegans (C. elegans), immediate and sustained effects of selenite, selenomethionine (SeMet), and Se-methylselenocysteine (MeSeCys) are studied regarding their bioavailability, incorporation into proteins, as well as modulation of the cellular redox status. While all tested Se compounds are bioavailable, only SeMet persistently accumulates and is non-specifically incorporated into proteins. However, the protection toward chemically-induced formation of reactive species is independent of the applied Se compound. Increased thioredoxin reductase (TXNRD) activity and changes in mRNA expression levels of antioxidant proteins indicate the activation of cellular defense mechanisms. However, in txnrd-1 deletion mutants, no protective effects of the Se species are observed anymore, which is also reflected by differential gene expression data. ConclusionSe species protect against chemically-induced reactive species formation. The identified immediate and sustained systemic effects of Se species give rise to speculations on possible benefits facing subsequent periods of inadequate Se intake. KW - antioxidant defense systems KW - caenorhabditis elegans KW - selenium KW - oxidative stress KW - selenoproteins Y1 - 2019 U6 - https://doi.org/10.1002/mnfr.201801304 SN - 1613-4125 SN - 1613-4133 VL - 63 IS - 9 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Wandt, Viktoria Klara Veronika A1 - Winkelbeiner, Nicola Lisa A1 - Bornhorst, Julia A1 - Witt, Barbara A1 - Raschke, Stefanie A1 - Simon, Luise A1 - Ebert, Franziska A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja T1 - A matter of concern BT - trace element dyshomeostasis and genomic stability in neurons JF - Redox Biology N2 - Neurons are post-mitotic cells in the brain and their integrity is of central importance to avoid neurodegeneration. Yet, the inability of self-replenishment of post-mitotic cells results in the need to withstand challenges from numerous stressors during life. Neurons are exposed to oxidative stress due to high oxygen consumption during metabolic activity in the brain. Accordingly, DNA damage can occur and accumulate, resulting in genome instability. In this context, imbalances in brain trace element homeostasis are a matter of concern, especially regarding iron, copper, manganese, zinc, and selenium. Although trace elements are essential for brain physiology, excess and deficient conditions are considered to impair neuronal maintenance. Besides increasing oxidative stress, DNA damage response and repair of oxidative DNA damage are affected by trace elements. Hence, a balanced trace element homeostasis is of particular importance to safeguard neuronal genome integrity and prevent neuronal loss. This review summarises the current state of knowledge on the impact of deficient, as well as excessive iron, copper, manganese, zinc, and selenium levels on neuronal genome stability Y1 - 2021 U6 - https://doi.org/10.1016/j.redox.2021.101877 VL - 41 PB - Elsevier CY - Amsterdam ER -