TY - GEN A1 - Scherer, Ulrike A1 - Tiedemann, Ralph A1 - Schlupp, Ingo T1 - Male size, not female preferences influence female reproductive success in a poeciliid fish (Poecilia latipinna) BT - a combined behavioural/genetic approach T2 - BMC Research Notes N2 - Objective We investigated the potential role of indirect benefits for female mate preferences in a highly promiscuous species of live-bearing fishes, the sailfin molly Poecilia latipinna using an integrative approach that combines methods from animal behavior, life-history evolution, and genetics. Males of this species solely contribute sperm for reproduction, and consequently females do not receive any direct benefits. Despite this, females typically show clear mate preferences. It has been suggested that females can increase their reproductive success through indirect benefits from choosing males of higher quality. Results Although preferences for large body size have been recorded as an honest signal for genetic quality, this particular study resulted in female preference being unaffected by male body size. Nonetheless, larger males did sire more offspring, but with no effect on offspring quality. This study presents a methodical innovation by combining preference testing with life history measurements—such as the determination of the dry weight of fish embryos—and paternity analyses on single fish embryos. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 468 KW - Fitness KW - Life history KW - Mate choice KW - Microsatellite analysis KW - Offspring weight KW - Paternity analysis KW - Sailfin molly KW - Sexual selection Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417471 ER - TY - GEN A1 - De Cahsan, Binia A1 - Westbury, Michael V. A1 - Drews, Hauke A1 - Tiedemann, Ralph T1 - The complete mitochondrial genome of a European fire-bellied toad (Bombina bombina) from Germany T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The European fire-bellied toad, Bombina bombina, is a small aquatic toad belonging to the family Bombinatoridae. The species is native to the lowlands of Central and Eastern Europe, where population numbers have been in decline in recent past decades. Here, we present the first complete mitochondrial genome of the endangered European fire-bellied toad from Northern Germany recovered using iterative mapping. Phylogenetic analyses including other representatives of the Bombinatoridae placed our German specimen as sister to a Polish B. bombina sequence with high support. This finding is congruent with the postulated Pleistocene history of the species. Our complete mitochondrial genome represents an important resource for further population analysis of the European fire-bellied toad, especially those found within Germany. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 532 KW - Bombina bombina KW - Fire-bellied toad KW - mitogenome KW - conservation genetics KW - population delimitation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423222 SN - 1866-8372 IS - 532 ER - TY - GEN A1 - Romero-Mujalli, Daniel A1 - Jeltsch, Florian A1 - Tiedemann, Ralph T1 - Elevated mutation rates are unlikely to evolve in sexual species, not even under rapid environmental change T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Background Organisms are expected to respond to changing environmental conditions through local adaptation, range shift or local extinction. The process of local adaptation can occur by genetic changes or phenotypic plasticity, and becomes especially relevant when dispersal abilities or possibilities are somehow constrained. For genetic changes to occur, mutations are the ultimate source of variation and the mutation rate in terms of a mutator locus can be subject to evolutionary change. Recent findings suggest that the evolution of the mutation rate in a sexual species can advance invasion speed and promote adaptation to novel environmental conditions. Following this idea, this work uses an individual-based model approach to investigate if the mutation rate can also evolve in a sexual species experiencing different conditions of directional climate change, under different scenarios of colored stochastic environmental noise, probability of recombination and of beneficial mutations. The color of the noise mimicked investigating the evolutionary dynamics of the mutation rate in different habitats. Results The results suggest that the mutation rate in a sexual species experiencing directional climate change scenarios can evolve and reach relatively high values mainly under conditions of complete linkage of the mutator locus and the adaptation locus. In contrast, when they are unlinked, the mutation rate can slightly increase only under scenarios where at least 50% of arising mutations are beneficial and the rate of environmental change is relatively fast. This result is robust under different scenarios of stochastic environmental noise, which supports the observation of no systematic variation in the mutation rate among organisms experiencing different habitats. Conclusions Given that 50% beneficial mutations may be an unrealistic assumption, and that recombination is ubiquitous in sexual species, the evolution of an elevated mutation rate in a sexual species experiencing directional climate change might be rather unlikely. Furthermore, when the percentage of beneficial mutations and the population size are small, sexual species (especially multicellular ones) producing few offspring may be expected to react to changing environments not by adaptive genetic change, but mainly through plasticity. Without the ability for a plastic response, such species may become – at least locally – extinct. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 776 KW - Individual-based models KW - sexual species KW - Beneficial mutations KW - Mutation rate KW - Mutator locus KW - Directional climate change KW - Recombination Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439058 SN - 1866-8372 IS - 776 ER - TY - JOUR A1 - Zhu, Fangjun A1 - Schlupp, Ingo A1 - Tiedemann, Ralph T1 - Sequence Evolution and Expression of the Androgen Receptor and Other Pathway-Related Genes in a Unisexual Fish, the Amazon Molly, Poecilia formosa, and Its Bisexual Ancestors JF - PLoS one N2 - The all-female Amazon molly (Poecilia formosa) originated from a single hybridization of two bisexual ancestors, Atlantic molly (Poecilia mexicana) and sailfin molly (Poecilia latipinna). As a gynogenetic species, the Amazon molly needs to copulate with a heterospecific male, but the genetic information of the sperm-donor does not contribute to the next generation, as the sperm only acts as the trigger for the diploid eggs’ embryogenesis. Here, we study the sequence evolution and gene expression of the duplicated genes coding for androgen receptors (ars) and other pathway-related genes, i.e., the estrogen receptors (ers) and cytochrome P450, family19, subfamily A, aromatase genes (cyp19as), in the Amazon molly, in comparison to its bisexual ancestors. Mollies possess–as most other teleost fish—two copies of the ar, er, and cyp19a genes, i.e., arα/arβ, erα/erβ1, and cyp19a1 (also referred as cyp19a1a)/cyp19a2 (also referred to as cyp19a1b), respectively. Non-synonymous single nucleotide polymorphisms (SNPs) among the ancestral bisexual species were generally predicted not to alter protein function. Some derived substitutions in the P. mexicana and one in P. formosa are predicted to impact protein function. We also describe the gene expression pattern of the ars and pathway-related genes in various tissues (i.e., brain, gill, and ovary) and provide SNP markers for allele specific expression research. As a general tendency, the levels of gene expression were lowest in gill and highest in ovarian tissues, while expression levels in the brain were intermediate in most cases. Expression levels in P. formosa were conserved where expression did not differ between the two bisexual ancestors. In those cases where gene expression levels significantly differed between the bisexual species, P. formosa expression was always comparable to the higher expression level among the two ancestors. Interestingly, erβ1 was expressed neither in brain nor in gill in the analyzed three molly species, which implies a more important role of erα in the estradiol synthesis pathway in these tissues. Furthermore, our data suggest that interactions of steroid-signaling pathway genes differ across tissues, in particular the interactions of ars and cyp19as. Y1 - 2016 U6 - https://doi.org/10.1371/JOURNAL.PONE.0156209 SN - 1932-6203 VL - 11 IS - 6 PB - PLoS CY - Lawrence, Kan. ER - TY - JOUR A1 - Tiedemann, Ralph A1 - Moll, K. A1 - Paulus, Kirsten B. A1 - Schlupp, Ingo T1 - New microsatellite loci confirm hybrid origin, parthenogenetic inheritance, and mitotic gene conversion in the gynogenetic Amazon molly (Poecilia formosa) N2 - We describe the first microsatellite loci for the gynogenetic Amazon molly, Poecilia formosa, an all-female species arisen through hybridization of the bisexual species Poecilia mexicana and Poecilia latipinna. The loci showed one to six alleles and an expected heterozygosity between zero and 0.75. As expected with parthenogenetic inheritance, most loci were either constantly homozygous (five loci) or constantly heterozygous (eight loci). For six loci, both heterozygotes and homozygotes occurred. This and the fact that some loci only showed alleles of one of the ancestral species could indicate genome homogenization through mitotic gene conversion. Our new loci conformed to the hybrid origin of Amazon molly and are also applicable to both ancestral bisexual species Y1 - 2005 SN - 1471-8278 ER - TY - JOUR A1 - Schnitzler, Joseph G. A1 - Pinzone, Marianna A1 - Autenrieth, Marijke A1 - van Neer, Abbo A1 - IJsseldijk, Lonneke L. A1 - Barber, Jonathan L. A1 - Deaville, Rob A1 - Jepson, Paul A1 - Brownlow, Andrew A1 - Schaffeld, Tobias A1 - Thome, Jean-Pierre A1 - Tiedemann, Ralph A1 - Das, Krishna A1 - Siebert, Ursula T1 - Inter-individual differences in contamination profiles as tracer of social group association in stranded sperm whales JF - Scientific reports N2 - Ecological and physiological factors lead to different contamination patterns in individual marine mammals. The objective of the present study was to assess whether variations in contamination profiles are indicative of social structures of young male sperm whales as they might reflect a variation in feeding preferences and/or in utilized feeding grounds. We used a total of 61 variables associated with organic compounds and trace element concentrations measured in muscle, liver, kidney and blubber gained from 24 sperm whales that stranded in the North Sea in January and February 2016. Combining contaminant and genetic data, there is evidence for at least two cohorts with different origin among these stranded sperm whales; one from the Canary Island region and one from the northern part of the Atlantic. While genetic data unravel relatedness and kinship, contamination data integrate over areas, where animals occured during their lifetime. Especially in long-lived animals with a large migratory potential, as sperm whales, contamination data may carry highly relevant information about aggregation through time and space. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-29186-z SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - GEN A1 - Lah, Ljerka A1 - Trense, Daronja A1 - Benke, Harald A1 - Berggren, Per A1 - Gunnlaugsson, Þorvaldur A1 - Lockyer, Christina A1 - Öztürk, Ayaka A1 - Öztürk, Bayram A1 - Pawliczka, Iwona A1 - Roos, Anna A1 - Siebert, Ursula A1 - Skóra, Krzysztof A1 - Víkingsson, Gísli A1 - Tiedemann, Ralph T1 - Spatially Explicit Analysis of Genome-Wide SNPs Detects Subtle Population Structure in a Mobile Marine Mammal, the Harbor Porpoise N2 - The population structure of the highly mobile marine mammal, the harbor porpoise (Phocoena phocoena), in the Atlantic shelf waters follows a pattern of significant isolation-by-distance. The population structure of harbor porpoises from the Baltic Sea, which is connected with the North Sea through a series of basins separated by shallow underwater ridges, however, is more complex. Here, we investigated the population differentiation of harbor porpoises in European Seas with a special focus on the Baltic Sea and adjacent waters, using a population genomics approach. We used 2872 single nucleotide polymorphisms (SNPs), derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), as well as 13 microsatellite loci and mitochondrial haplotypes for the same set of individuals. Spatial principal components analysis (sPCA), and Bayesian clustering on a subset of SNPs suggest three main groupings at the level of all studied regions: the Black Sea, the North Atlantic, and the Baltic Sea. Furthermore, we observed a distinct separation of the North Sea harbor porpoises from the Baltic Sea populations, and identified splits between porpoise populations within the Baltic Sea. We observed a notable distinction between the Belt Sea and the Inner Baltic Sea sub-regions. Improved delineation of harbor porpoise population assignments for the Baltic based on genomic evidence is important for conservation management of this endangered cetacean in threatened habitats, particularly in the Baltic Sea proper. In addition, we show that SNPs outperform microsatellite markers and demonstrate the utility of RAD-tags from a relatively small, opportunistically sampled cetacean sample set for population diversity and divergence analysis. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 295 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-100813 SN - 1866-8372 ER - TY - GEN A1 - Plath, Martin A1 - Hermann, Bernd A1 - Schröder, Christine A1 - Riesch, Rüdiger A1 - Tobler, Michael A1 - García de León, Francisco J. A1 - Schlupp, Ingo A1 - Tiedemann, Ralph T1 - Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event N2 - Background: Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Results: Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. Conclusions: The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary perturbations, as adaptations to physico-chemical stressors may directly affect the survival probability in divergent habitat types. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 162 Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-48599 ER - TY - GEN A1 - Zhu, Fangjun A1 - Schlupp, Ingo A1 - Tiedemann, Ralph T1 - Sequence Evolution and Expression of the Androgen Receptor and Other Pathway-Related Genes in a Unisexual Fish, the Amazon Molly, Poecilia formosa, and Its Bisexual Ancestors N2 - The all-female Amazon molly (Poecilia formosa) originated from a single hybridization of two bisexual ancestors, Atlantic molly (Poecilia mexicana) and sailfin molly (Poecilia latipinna). As a gynogenetic species, the Amazon molly needs to copulate with a heterospecific male, but the genetic information of the sperm-donor does not contribute to the next generation, as the sperm only acts as the trigger for the diploid eggs’ embryogenesis. Here, we study the sequence evolution and gene expression of the duplicated genes coding for androgen receptors (ars) and other pathway-related genes, i.e., the estrogen receptors (ers) and cytochrome P450, family19, subfamily A, aromatase genes (cyp19as), in the Amazon molly, in comparison to its bisexual ancestors. Mollies possess–as most other teleost fish—two copies of the ar, er, and cyp19a genes, i.e., arα/arβ, erα/erβ1, and cyp19a1 (also referred as cyp19a1a)/cyp19a2 (also referred to as cyp19a1b), respectively. Non-synonymous single nucleotide polymorphisms (SNPs) among the ancestral bisexual species were generally predicted not to alter protein function. Some derived substitutions in the P. mexicana and one in P. formosa are predicted to impact protein function. We also describe the gene expression pattern of the ars and pathway-related genes in various tissues (i.e., brain, gill, and ovary) and provide SNP markers for allele specific expression research. As a general tendency, the levels of gene expression were lowest in gill and highest in ovarian tissues, while expression levels in the brain were intermediate in most cases. Expression levels in P. formosa were conserved where expression did not differ between the two bisexual ancestors. In those cases where gene expression levels significantly differed between the bisexual species, P. formosa expression was always comparable to the higher expression level among the two ancestors. Interestingly, erβ1 was expressed neither in brain nor in gill in the analyzed three molly species, which implies a more important role of erα in the estradiol synthesis pathway in these tissues. Furthermore, our data suggest that interactions of steroid-signaling pathway genes differ across tissues, in particular the interactions of ars and cyp19as. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 265 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-97119 ER - TY - GEN A1 - Sammler, Svenja A1 - Bleidorn, Christoph A1 - Tiedemann, Ralph T1 - Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination N2 - Background: Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA) may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes) is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Results: Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni) and 22,737 bp (P. panini), they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i. e., in every generation. Conclusions: The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB), which has been described from the chicken mitochondrial genome. As this RFB is supposed to halt replication, it offers a potential mechanistic explanation for frequent recombination in mitochondrial genomes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 367 KW - d-loop region KW - concerted evolution KW - gene order KW - birds KW - phylogeny KW - heteroplasmy KW - organization KW - duplication KW - vertebrates KW - alignment Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400889 ER - TY - GEN A1 - Schedina, Ina Maria A1 - Groth, Detlef A1 - Schlupp, Ingo A1 - Tiedemann, Ralph T1 - The gonadal transcriptome of the unisexual Amazon molly Poecilia formosa in comparison to its sexual ancestors, Poecilia mexicana and Poecilia latipinna N2 - Abstract Background The unisexual Amazon molly (Poecilia formosa) originated from a hybridization between two sexual species, the sailfin molly (Poecilia latipinna) and the Atlantic molly (Poecilia mexicana). The Amazon molly reproduces clonally via sperm-dependent parthenogenesis (gynogenesis), in which the sperm of closely related species triggers embryogenesis of the apomictic oocytes, but typically does not contribute genetic material to the next generation. We compare for the first time the gonadal transcriptome of the Amazon molly to those of both ancestral species, P. mexicana and P. latipinna. Results We sequenced the gonadal transcriptomes of the P. formosa and its parental species P. mexicana and P. latipinna using Illumina RNA-sequencing techniques (paired-end, 100 bp). De novo assembly of about 50 million raw read pairs for each species was performed using Trinity, yielding 106,922 transcripts for P. formosa, 115,175 for P. latipinna, and 133,025 for P. mexicana after eliminating contaminations. On the basis of sequence similarity comparisons to other teleost species and the UniProt databases, functional annotation, and differential expression analysis, we demonstrate the similarity of the transcriptomes among the three species. More than 40% of the transcripts for each species were functionally annotated and about 70% were assigned to orthologous genes of a closely related species. Differential expression analysis between the sexual and unisexual species uncovered 2035 up-regulated and 564 down-regulated genes in P. formosa. This was exemplary validated for six genes by qRT-PCR. Conclusions We identified more than 130 genes related to meiosis and reproduction within the apomictically reproducing P. formosa. Overall expression of these genes seems to be down-regulated in the P. formosa transcriptome compared to both ancestral species (i.e., 106 genes down-regulated, 29 up-regulated). A further 35 meiosis and reproduction related genes were not found in the P. formosa transcriptome, but were only expressed in the sexual species. Our data support the hypothesis of general down-regulation of meiosis-related genes in the apomictic Amazon molly. Furthermore, the obtained dataset and identified gene catalog will serve as a resource for future research on the molecular mechanisms behind the reproductive mode of this unisexual species. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 412 KW - Differential gene expression KW - Gynogenesis KW - Hybrid speciation KW - Meiosis KW - Poecilia formosa KW - Poecilia latipinna KW - Poecilia mexicana Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409299 ER - TY - GEN A1 - Pavesi, Laura A1 - Tiedemann, Ralph A1 - De Matthaeis, Elvira A1 - Ketmaier, Valerio T1 - Genetic connectivity between land and sea BT - the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea N2 - Introduction: We examined patterns of genetic divergence in 26 Mediterranean populations of the semi-terrestrial beachflea Orchestia montagui using mitochondrial (cytochrome oxidase subunit I), microsatellite (eight loci) and allozymic data. The species typically forms large populations within heaps of dead seagrass leaves stranded on beaches at the waterfront. We adopted a hierarchical geographic sampling to unravel population structure in a species living at the sea-land transition and, hence, likely subjected to dramatically contrasting forces. Results: Mitochondrial DNA showed historical phylogeographic breaks among Adriatic, Ionian and the remaining basins (Tyrrhenian, Western and Eastern Mediterranean Sea) likely caused by the geological and climatic changes of the Pleistocene. Microsatellites (and to a lesser extent allozymes) detected a further subdivision between and within the Western Mediterranean and the Tyrrhenian Sea due to present-day processes. A pattern of isolation by distance was not detected in any of the analyzed data set. Conclusions: We conclude that the population structure of O. montagui is the result of the interplay of two contrasting forces that act on the species population genetic structure. On one hand, the species semi-terrestrial life style would tend to determine the onset of local differences. On the other hand, these differences are partially counter-balanced by passive movements of migrants via rafting on heaps of dead seagrass leaves across sites by sea surface currents. Approximate Bayesian Computations support dispersal at sea as prevalent over terrestrial regionalism. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 399 KW - Orchestia montagui KW - Talitrids KW - Mediterranean Sea KW - Phylogeography KW - Mitochondrial DNA KW - Microsatellites KW - Allozymes KW - Approximate Bayesian Computation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401110 ER - TY - GEN A1 - Makowicz, Amber M. A1 - Tiedemann, Ralph A1 - Steele, Rachel N. A1 - Schlupp, Ingo T1 - Kin recognition in a clonal fish, Poecilia formosa T2 - PLoS ONE N2 - Relatedness strongly influences social behaviors in a wide variety of species. For most species, the highest typical degree of relatedness is between full siblings with 50% shared genes. However, this is poorly understood in species with unusually high relatedness between individuals: clonal organisms. Although there has been some investigation into clonal invertebrates and yeast, nothing is known about kin selection in clonal vertebrates. We show that a clonal fish, the Amazon molly (Poecilia formosa), can distinguish between different clonal lineages, associating with genetically identical, sister clones, and use multiple sensory modalities. Also, they scale their aggressive behaviors according to the relatedness to other females: they are more aggressive to non-related clones. Our results demonstrate that even in species with very small genetic differences between individuals, kin recognition can be adaptive. Their discriminatory abilities and regulation of costly behaviors provides a powerful example of natural selection in species with limited genetic diversity. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 431 KW - toxic hydrogen-sulfide KW - sexual selection KW - hybrid origin KW - discrimination KW - behavior KW - competition KW - aggression KW - cues KW - consequences KW - avoidance Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411329 ER - TY - GEN A1 - Sammler, Svenja A1 - Ketmaier, Valerio A1 - Havenstein, Katja A1 - Krause, Ulrike A1 - Curio, Eberhard A1 - Tiedemann, Ralph T1 - Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae) detect gene flow between island populations and genetic diversity loss N2 - Background: The Visayan Tarictic Hornbill (Penelopides panini) and the Walden's Hornbill (Aceros waldeni) are two threatened hornbill species endemic to the western islands of the Visayas that constitute - between Luzon and Mindanao - the central island group of the Philippine archipelago. In order to evaluate their genetic diversity and to support efforts towards their conservation, we analyzed genetic variation in similar to 600 base pairs (bp) of the mitochondrial control region I and at 12-19 nuclear microsatellite loci. The sampling covered extant populations, still occurring only on two islands (P. panini: Panay and Negros, A. waldeni: only Panay), and it was augmented with museum specimens of extinct populations from neighboring islands. For comparison, their less endangered (= more abundant) sister taxa, the Luzon Tarictic Hornbill (P. manillae) from the Luzon and Polillo Islands and the Writhed Hornbill (A. leucocephalus) from Mindanao Island, were also included in the study. We reconstructed the population history of the two Penelopides species and assessed the genetic population structure of the remaining wild populations in all four species. Results: Mitochondrial and nuclear data concordantly show a clear genetic separation according to the island of origin in both Penelopides species, but also unravel sporadic over-water movements between islands. We found evidence that deforestation in the last century influenced these migratory events. Both classes of markers and the comparison to museum specimens reveal a genetic diversity loss in both Visayan hornbill species, P. panini and A. waldeni, as compared to their more abundant relatives. This might have been caused by local extinction of genetically differentiated populations together with the dramatic decline in the abundance of the extant populations. Conclusions: We demonstrated a loss in genetic diversity of P. panini and A. waldeni as compared to their sister taxa P. manillae and A. leucocephalus. Because of the low potential for gene flow and population exchange across islands, saving of the remaining birds of almost extinct local populations - be it in the wild or in captivity - is particularly important to preserve the species' genetic potential. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 378 KW - biogeography KW - bucerotidae KW - conservation genetics KW - genetic diversity loss KW - microsatellites KW - mitochondrial control region I KW - Philippine archipelago KW - phylogeography Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401108 ER - TY - GEN A1 - Zhu, Fangjun A1 - Schlupp, Ingo A1 - Tiedemann, Ralph T1 - Allele-specific expression at the androgen receptor alpha gene in a hybrid unisexual fish, the Amazon molly (Poecilia formosa) N2 - The all-female Amazon molly (Poecilia formosa) is the result of a hybridization of the Atlantic molly (P. mexicana) and the sailfin molly (P. latipinna) approximately 120,000 years ago. As a gynogenetic species, P. formosa needs to copulate with heterospecific males including males from one of its bisexual ancestral species. However, the sperm only triggers embryogenesis of the diploid eggs. The genetic information of the sperm donor typically will not contribute to the next generation of P. formosa. Hence, P. formosa possesses generally one allele from each of its ancestral species at any genetic locus. This raises the question whether both ancestral alleles are equally expressed in P. formosa. Allele-specific expression (ASE) has been previously assessed in various organisms, e.g., human and fish, and ASE was found to be important in the context of phenotypic variability and disease. In this study, we utilized Real-Time PCR techniques to estimate ASE of the androgen receptor alpha (arα) gene in several distinct tissues of Amazon mollies. We found an allelic bias favoring the maternal ancestor (P. mexicana) allele in ovarian tissue. This allelic bias was not observed in the gill or the brain tissue. Sequencing of the promoter regions of both alleles revealed an association between an Indel in a known CpG island and differential expression. Future studies may reveal whether our observed cis-regulatory divergence is caused by an ovary-specific trans-regulatory element, preferentially activating the allele of the maternal ancestor. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 395 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403875 ER - TY - JOUR A1 - Canitz, Julia A1 - Kirschbaum, Frank A1 - Tiedemann, Ralph T1 - Transcriptome-wide single nucleotide polymorphisms related to electric organ discharge differentiation among African weakly electric fish species JF - PLoS one N2 - African weakly electric fish of the mormyrid genus Campylomormyrus generate pulse-type electric organ discharges (EODs) for orientation and communication. Their pulse durations are species-specific and elongated EODs are a derived trait. So far, differential gene expression among tissue-specific transcriptomes across species with different pulses and point mutations in single ion channel genes indicate a relation of pulse duration and electrocyte geometry/excitability. However, a comprehensive assessment of expressed Single Nucleotide Polymorphisms (SNPs) throughout the entire transcriptome of African weakly electric fish, with the potential to identify further genes influencing EOD duration, is still lacking. This is of particular value, as discharge duration is likely based on multiple cellular mechanisms and various genes. Here we provide the first transcriptome-wide SNP analysis of African weakly electric fish species (genus Campylomormyrus) differing by EOD duration to identify candidate genes and cellular mechanisms potentially involved in the determination of an elongated discharge of C. tshokwe. Non-synonymous substitutions specific to C. tshokwe were found in 27 candidate genes with inferred positive selection among Campylomormyrus species. These candidate genes had mainly functions linked to transcriptional regulation, cell proliferation and cell differentiation. Further, by comparing gene annotations between C. compressirostris (ancestral short EOD) and C. tshokwe (derived elongated EOD), we identified 27 GO terms and 2 KEGG pathway categories for which C. tshokwe significantly more frequently exhibited a species-specific expressed substitution than C. compressirostris. The results indicate that transcriptional regulation as well cell proliferation and differentiation take part in the determination of elongated pulse durations in C. tshokwe. Those cellular processes are pivotal for tissue morphogenesis and might determine the shape of electric organs supporting the observed correlation between electrocyte geometry/tissue structure and discharge duration. The inferred expressed SNPs and their functional implications are a valuable resource for future investigations on EOD durations. Y1 - 2020 U6 - https://doi.org/10.1371/journal.pone.0240812 SN - 1932-6203 VL - 15 IS - 10 PB - PLoS CY - San Francisco, California, US ER - TY - GEN A1 - Lamanna, Francesco A1 - Kirschbaum, Frank A1 - Waurick, Isabelle A1 - Dieterich, Christoph A1 - Tiedemann, Ralph T1 - Cross-tissue and cross-species analysis of gene expression in skeletal muscle and electric organ of African weakly-electric fish (Teleostei; Mormyridae) N2 - Background African weakly-electric fishes of the family Mormyridae are able to produce and perceive weak electric signals (typically less than one volt in amplitude) owing to the presence of a specialized, muscle-derived electric organ (EO) in their tail region. Such electric signals, also known as Electric Organ Discharges (EODs), are used for objects/prey localization, for the identification of conspecifics, and in social and reproductive behaviour. This feature might have promoted the adaptive radiation of this family by acting as an effective pre-zygotic isolation mechanism. Despite the physiological and evolutionary importance of this trait, the investigation of the genetic basis of its function and modification has so far remained limited. In this study, we aim at: i) identifying constitutive differences in terms of gene expression between electric organ and skeletal muscle (SM) in two mormyrid species of the genus Campylomormyrus: C. compressirostris and C. tshokwe, and ii) exploring cross-specific patterns of gene expression within the two tissues among C. compressirostris, C. tshokwe, and the outgroup species Gnathonemus petersii. Results Twelve paired-end (100 bp) strand-specific RNA-seq Illumina libraries were sequenced, producing circa 330 M quality-filtered short read pairs. The obtained reads were assembled de novo into four reference transcriptomes. In silico cross-tissue DE-analysis allowed us to identify 271 shared differentially expressed genes between EO and SM in C. compressirostris and C.tshokwe. Many of these genes correspond to myogenic factors, ion channels and pumps, and genes involved in several metabolic pathways. Cross-species analysis has revealed that the electric organ transcriptome is more variable in terms of gene expression levels across species than the skeletal muscle transcriptome. Conclusions The data obtained indicate that: i) the loss of contractile activity and the decoupling of the excitation-contraction processes are reflected by the down-regulation of the corresponding genes in the electric organ’s transcriptome; ii) the metabolic activity of the EO might be specialized towards the production and turn-over of membrane structures; iii) several ion channels are highly expressed in the EO in order to increase excitability; iv) several myogenic factors might be down-regulated by transcription repressors in the EO. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 212 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-86997 ER - TY - JOUR A1 - Feulner, Philine G. D. A1 - Kirschbaum, Frank A1 - Schugardt, Christian A1 - Ketmaier, Valerio A1 - Tiedemann, Ralph T1 - Electrophysiological and molecular genetic evidence for sympatrically occuring cryptic species in African weakly electric fishes (Teleostei : Mormyridae : Campylomormyrus) N2 - For two sympatric species of African weakly electric fish, Campylomormyrus tamandua and Campylomormyrus numenius, we monitored ontogenetic differentiation in electric organ discharge (EOD) and established a molecular phylogeny, based on 2222 bp from cytochrome b, the S7 ribosomal protein gene, and four flanking regions of unlinked microsatellite loci. In C tamandua, there is one common EOD type, regardless of age and sex, whereas in C numenius we were able to identify three different male adult EOD waveform types, which emerged from a single common EOD observed in juveniles. Two of these EOD types formed well supported clades in our phylogenetic analysis. In an independent line of evidence, we were able to affirm the classification into three groups by microsatellite data. The correct assignment and the high pairwise FST values support our hypothesis that these groups are reproductively isolated. We propose that in C numenius there are cryptic species, hidden behind similar and, at least as juveniles, identical morphs. Y1 - 2006 UR - http://www.sciencedirect.com/science/journal/10557903 U6 - https://doi.org/10.1016/j.ympev.2005.09.008 SN - 1055-7903 ER - TY - JOUR A1 - Nagel, Rebecca A1 - Kirschbaum, Frank A1 - Tiedemann, Ralph T1 - Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes JF - Journal of comparative physiology : A, Neuroethology, sensory, neural, and behavioral physiology N2 - In mormyrid weakly electric fish, the electric organ discharge (EOD) is used for species recognition, orientation and prey localization. Produced in the muscle-derived adult electric organ, the EOD exhibits a wide diversity across species in both waveform and duration. While certain defining EOD characteristics can be linked to anatomical features of the electric organ, many factors underlying EOD differentiation are yet unknown. Here, we report the differential expression of 13 Kv1 voltage-gated potassium channel genes, two inwardly rectifying potassium channel genes, two previously studied sodium channel genes and an ATPase pump in two sympatric species of the genus Campylomormyrus in both the adult electric organ and skeletal muscle. Campylomormyrus compressirostris displays a basal EOD, largely unchanged during development, while C. tshokwe has an elongated, putatively derived discharge. We report an upregulation in all Kv1 genes in the electric organ of Campylomormyrus tshokwe when compared to both skeletal muscle and C. compressirostris electric organ. This pattern of upregulation in a species with a derived EOD form suggests that voltage-gated potassium channels are potentially involved in the diversification of the EOD signal among mormyrid weakly electric fish. KW - Weakly electric fish KW - Ion channels KW - Electric organ KW - Gene expression KW - Campylomormyrus Y1 - 2017 U6 - https://doi.org/10.1007/s00359-017-1151-2 SN - 0340-7594 SN - 1432-1351 VL - 203 SP - 183 EP - 195 PB - Springer CY - New York ER - TY - JOUR A1 - Lamanna, Francesco A1 - Kirschbaum, Frank A1 - Waurick, Isabelle A1 - Dieterich, Christoph A1 - Tiedemann, Ralph T1 - Cross-tissue and cross-species analysis of gene expression in skeletal muscle and electric organ of African weakly-electric fish (Teleostei; Mormyridae) JF - BMC genomics N2 - Background: African weakly-electric fishes of the family Mormyridae are able to produce and perceive weak electric signals (typically less than one volt in amplitude) owing to the presence of a specialized, muscle-derived electric organ (EO) in their tail region. Such electric signals, also known as Electric Organ Discharges (EODs), are used for objects/prey localization, for the identification of conspecifics, and in social and reproductive behaviour. This feature might have promoted the adaptive radiation of this family by acting as an effective pre-zygotic isolation mechanism. Despite the physiological and evolutionary importance of this trait, the investigation of the genetic basis of its function and modification has so far remained limited. In this study, we aim at: i) identifying constitutive differences in terms of gene expression between electric organ and skeletal muscle (SM) in two mormyrid species of the genus Campylomormyrus: C. compressirostris and C. tshokwe, and ii) exploring cross-specific patterns of gene expression within the two tissues among C. compressirostris, C. tshokwe, and the outgroup species Gnathonemus petersii. Results: Twelve paired-end (100 bp) strand-specific RNA-seq Illumina libraries were sequenced, producing circa 330 M quality-filtered short read pairs. The obtained reads were assembled de novo into four reference transcriptomes. In silico cross-tissue DE-analysis allowed us to identify 271 shared differentially expressed genes between EO and SM in C. compressirostris and C. tshokwe. Many of these genes correspond to myogenic factors, ion channels and pumps, and genes involved in several metabolic pathways. Cross-species analysis has revealed that the electric organ transcriptome is more variable in terms of gene expression levels across species than the skeletal muscle transcriptome. Conclusions: The data obtained indicate that: i) the loss of contractile activity and the decoupling of the excitation-contraction processes are reflected by the down-regulation of the corresponding genes in the electric organ's transcriptome; ii) the metabolic activity of the EO might be specialized towards the production and turn-over of membrane structures; iii) several ion channels are highly expressed in the EO in order to increase excitability; iv) several myogenic factors might be down-regulated by transcription repressors in the EO. Y1 - 2015 U6 - https://doi.org/10.1186/s12864-015-1858-9 SN - 1471-2164 VL - 16 PB - BioMed Central CY - London ER -