TY - JOUR A1 - Olas, Justyna Jadwiga A1 - Apelt, Federico A1 - Watanabe, Mutsumi A1 - Höfgen, Rainer A1 - Wahl, Vanessa T1 - Developmental stage-specific metabolite signatures in Arabidopsis thaliana under optimal and mild nitrogen limitation JF - Plant science : an international journal of experimental plant biology N2 - Metabolites influence flowering time, and thus are among the major determinants of yield. Despite the reported role of trehalose 6-phosphate and nitrate signaling on the transition from the vegetative to the reproductive phase, little is known about other metabolites contributing and responding to developmental phase changes. To increase our understanding which metabolic traits change throughout development in Arabidopsis thaliana and to identify metabolic markers for the vegetative and reproductive phases, especially among individual amino acids (AA), we profiled metabolites of plants grown in optimal (ON) and limited nitrogen (N) (LN) conditions, the latter providing a mild but consistent limitation of N. We found that although LN plants adapt their growth to a decreased level of N, their metabolite profiles are strongly distinct from ON plant profiles, with N as the driving factor for the observed differences. We demonstrate that the vegetative and the reproductive phase are not only marked by growth parameters such as biomass and rosette area, but also by specific metabolite signatures including specific single AA. In summary, we identified N-dependent and -independent indicators manifesting developmental stages, indicating that the plant's metabolic status also reports on the developmental phases. KW - Amino acids KW - Floral induction KW - Flowering time KW - Nitrogen KW - Metabolites KW - Vegetative phase KW - Reproductive phase Y1 - 2021 U6 - https://doi.org/10.1016/j.plantsci.2020.110746 SN - 0168-9452 SN - 1873-2259 VL - 303 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Schmidt, Romy A1 - Mieulet, Delphine A1 - Hubberten, Hans-Michael A1 - Obata, Toshihiro A1 - Höfgen, Rainer A1 - Fernie, Alisdair R. A1 - Fisahn, Joachim A1 - Segundo, Blanca San A1 - Guiderdoni, Emmanuel A1 - Schippers, Jos H. M. A1 - Müller-Röber, Bernd T1 - Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice JF - The plant cell N2 - Early detection of salt stress is vital for plant survival and growth. Still, the molecular processes controlling early salt stress perception and signaling are not fully understood. Here, we identified SALT-RESPONSIVE ERF1 (SERF1), a rice (Oryza sativa) transcription factor (TF) gene that shows a root-specific induction upon salt and hydrogen peroxide (H2O2) treatment. Loss of SERF1 impairs the salt-inducible expression of genes encoding members of a mitogen-activated protein kinase (MAPK) cascade and salt tolerance-mediating TFs. Furthermore, we show that SERF1-dependent genes are H2O2 responsive and demonstrate that SERF1 binds to the promoters of MAPK KINASE KINASE6 (MAP3K6), MAPK5, DEHYDRATION-RESPONSIVE ELEMENT BINDING2A (DREB2A), and ZINC FINGER PROTEIN179 (ZFP179) in vitro and in vivo. SERF1 also directly induces its own gene expression. In addition, SERF1 is a phosphorylation target of MAPK5, resulting in enhanced transcriptional activity of SERF1 toward its direct target genes. In agreement, plants deficient for SERF1 are more sensitive to salt stress compared with the wild type, while constitutive overexpression of SERF1 improves salinity tolerance. We propose that SERF1 amplifies the reactive oxygen species-activated MAPK cascade signal during the initial phase of salt stress and translates the salt-induced signal into an appropriate expressional response resulting in salt tolerance. Y1 - 2013 U6 - https://doi.org/10.1105/tpc.113.113068 SN - 1040-4651 VL - 25 IS - 6 SP - 2115 EP - 2131 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Watanabe, Mutsumi A1 - Balazadeh, Salma A1 - Tohge, Takayuki A1 - Erban, Alexander A1 - Giavalisco, Patrick A1 - Kopka, Joachim A1 - Müller-Röber, Bernd A1 - Fernie, Alisdair R. A1 - Höfgen, Rainer T1 - Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in arabidopsis JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Developmental senescence is a coordinated physiological process in plants and is critical for nutrient redistribution from senescing leaves to newly formed sink organs, including young leaves and developing seeds. Progress has been made concerning the genes involved and the regulatory networks controlling senescence. The resulting complex metabolome changes during senescence have not been investigated in detail yet. Therefore, we conducted a comprehensive profiling of metabolites, including pigments, lipids, sugars, amino acids, organic acids, nutrient ions, and secondary metabolites, and determined approximately 260 metabolites at distinct stages in leaves and siliques during senescence in Arabidopsis (Arabidopsis thaliana). This provided an extensive catalog of metabolites and their spatiotemporal cobehavior with progressing senescence. Comparison with silique data provides clues to source-sink relations. Furthermore, we analyzed the metabolite distribution within single leaves along the basipetal sink-source transition trajectory during senescence. Ceramides, lysolipids, aromatic amino acids, branched chain amino acids, and stress-induced amino acids accumulated, and an imbalance of asparagine/aspartate, glutamate/glutamine, and nutrient ions in the tip region of leaves was detected. Furthermore, the spatiotemporal distribution of tricarboxylic acid cycle intermediates was already changed in the presenescent leaves, and glucosinolates, raffinose, and galactinol accumulated in the base region of leaves with preceding senescence. These results are discussed in the context of current models of the metabolic shifts occurring during developmental and environmentally induced senescence. As senescence processes are correlated to crop yield, the metabolome data and the approach provided here can serve as a blueprint for the analysis of traits and conditions linking crop yield and senescence. Y1 - 2013 U6 - https://doi.org/10.1104/pp.113.217380 SN - 0032-0889 VL - 162 IS - 3 SP - 1290 EP - 1310 PB - American Society of Plant Physiologists CY - Rockville ER -