TY - JOUR A1 - Raab, Corinna A1 - Wessel, Niels A1 - Schirdewan, Alexander A1 - Kurths, Jürgen T1 - Large-scale dimension densities for heart rate variability analysis N2 - In this work, we reanalyze the heart rate variability (HRV) data from the 2002 Computers in Cardiology (CiC) Challenge using the concept of large-scale dimension densities and additionally apply this technique to data of healthy persons and of patients with cardiac diseases. The large-scale dimension density (LASDID) is estimated from the time series using a normalized Grassberger-Procaccia algorithm, which leads to a suitable correction of systematic errors produced by boundary effects in the rather large scales of a system. This way, it is possible to analyze rather short, nonstationary, and unfiltered data, such as HRV. Moreover, this method allows us to analyze short parts of the data and to look for differences between day and night. The circadian changes in the dimension density enable us to distinguish almost completely between real data and computer-generated data from the CiC 2002 challenge using only one parameter. In the second part we analyzed the data of 15 patients with atrial fibrillation (AF), 15 patients with congestive heart failure (CHF), 15 elderly healthy subjects (EH), as well as 18 young and healthy persons (YH). With our method we are able to separate completely the AF (rho(mu)(ls)=0.97 +/- 0.02) group from the others and, especially during daytime, the CHF patients show significant differences from the young and elderly healthy volunteers (CHF, 0.65 +/- 0.13; EH, 0.54 +/- 0.05; YH, 0.57 +/- 0.05; p < 0.05 for both comparisons). Moreover, for the CHF patients we find no circadian changes in rho(mu)(ls) (day, 0.65 +/- 0.13; night, 0.66 +/- 0.12; n.s.) in contrast to healthy controls (day, 0.54 +/- 0.05; night, 0.61 +/- 0.05; p=0.002). Correlation analysis showed no statistical significant relation between standard HRV and circadian LASDID, demonstrating a possibly independent application of our method for clinical risk stratification Y1 - 2006 UR - http://pre.aps.org/ U6 - https://doi.org/10.1103/Physreve.73.041907 SN - 1539-3755 ER - TY - JOUR A1 - Raab, Corinna A1 - Kurths, Jürgen T1 - Estimation of Large-Scale Dimension Densities N2 - We propose a technique to calculate large-scale dimension densities in both higher-dimensional spatio-temporal systems and low-dimensional systems from only a few data points, where known methods usually have an unsatisfactory scaling behavior. This is mainly due to boundary and finite size effects. With our rather simple method we normalize boundary effects and get a significant correction of the dimension estimate. This straightforward approach is basing on rather general assumptions. So even weak coherent structures obtained from small spatial couplings can be detected with this method, what is impossible by using the Lyapunov-dimension density. We demonstrate the efficiency of our technique for coupled logistic maps, coupled tent maps, the Lorenz-attractor and the Roessler-attractor. Y1 - 2001 ER -