TY - JOUR A1 - Wang, Enli A1 - He, Di A1 - Wang, Jing A1 - Lilley, Julianne M. A1 - Christy, Brendan A1 - Hoffmann, Munir P. A1 - O'Leary, Garry A1 - Hatfield, Jerry L. A1 - Ledda, Luigi A1 - Deligios, Paola A. A1 - Grant, Brian A1 - Jing, Qi A1 - Nendel, Claas A1 - Kage, Henning A1 - Qian, Budong A1 - Rezaei, Ehsan Eyshi A1 - Smith, Ward A1 - Weymann, Wiebke A1 - Ewert, Frank T1 - How reliable are current crop models for simulating growth and seed yield of canola across global sites and under future climate change? JF - Climatic change N2 - To better understand how climate change might influence global canola production, scientists from six countries have completed the first inter-comparison of eight crop models for simulating growth and seed yield of canola, based on experimental data from six sites across five countries. A sensitivity analysis was conducted with a combination of five levels of atmospheric CO2 concentrations, seven temperature changes, five precipitation changes, together with five nitrogen application rates. Our results were in several aspects different from those of previous model inter-comparison studies for wheat, maize, rice, and potato crops. A partial model calibration only on phenology led to very poor simulation of aboveground biomass and seed yield of canola, even from the ensemble median or mean. A full calibration with additional data of leaf area index, biomass, and yield from one treatment at each site reduced simulation error of seed yield from 43.8 to 18.0%, but the uncertainty in simulation results remained large. Such calibration (with data from one treatment) was not able to constrain model parameters to reduce simulation uncertainty across the wide range of environments. Using a multi-model ensemble mean or median reduced the uncertainty of yield simulations, but the simulation error remained much larger than observation errors, indicating no guarantee that the ensemble mean/median would predict the correct responses. Using multi-model ensemble median, canola yield was projected to decline with rising temperature (2.5-5.7% per degrees C), but to increase with increasing CO2 concentration (4.6-8.3% per 100-ppm), rainfall (2.1-6.1% per 10% increase), and nitrogen rates (1.3-6.0% per 10% increase) depending on locations. Due to the large uncertainty, these results need to be treated with caution. We further discuss the need to collect new data to improve modelling of several key physiological processes of canola for increased confidence in future climate impact assessments. KW - AgMIP KW - Brassica napus L. KW - Model calibration KW - Model improvement; KW - Multimodel ensemble KW - Sensitivity analysis Y1 - 2022 U6 - https://doi.org/10.1007/s10584-022-03375-2 SN - 0165-0009 SN - 1573-1480 VL - 172 IS - 1-2 PB - Springer Nature CY - Dordrecht ER - TY - JOUR A1 - Kothari, Kritika A1 - Battisti, Rafael A1 - Boote, Kenneth J. A1 - Archontoulis, Sotirios A1 - Confalone, Adriana A1 - Constantin, Julie A1 - Cuadra, Santiago A1 - Debaeke, Philippe A1 - Faye, Babacar A1 - Grant, Brian A1 - Hoogenboom, Gerrit A1 - Jing, Qi A1 - van der Laan, Michael A1 - Macena da Silva, Fernando Antonio A1 - Marin, Fabio R. A1 - Nehbandani, Alireza A1 - Nendel, Claas A1 - Purcell, Larry C. A1 - Qian, Budong A1 - Ruane, Alex C. A1 - Schoving, Celine A1 - Silva, Evandro H. F. M. A1 - Smith, Ward A1 - Soltani, Afshin A1 - Srivastava, Amit A1 - Vieira, Nilson A. A1 - Slone, Stacey A1 - Salmeron, Montserrat T1 - Are soybean models ready for climate change food impact assessments? JF - European journal of agronomy : the official journal of the European Society for Agronomy N2 - An accurate estimation of crop yield under climate change scenarios is essential to quantify our ability to feed a growing population and develop agronomic adaptations to meet future food demand. A coordinated evaluation of yield simulations from process-based eco-physiological models for climate change impact assessment is still missing for soybean, the most widely grown grain legume and the main source of protein in our food chain. In this first soybean multi-model study, we used ten prominent models capable of simulating soybean yield under varying temperature and atmospheric CO2 concentration [CO2] to quantify the uncertainty in soybean yield simulations in response to these factors. Models were first parametrized with high quality measured data from five contrasting environments. We found considerable variability among models in simulated yield responses to increasing temperature and [CO2]. For example, under a + 3 degrees C temperature rise in our coolest location in Argentina, some models simulated that yield would reduce as much as 24%, while others simulated yield increases up to 29%. In our warmest location in Brazil, the models simulated a yield reduction ranging from a 38% decrease under + 3 degrees C temperature rise to no effect on yield. Similarly, when increasing [CO2] from 360 to 540 ppm, the models simulated a yield increase that ranged from 6% to 31%. Model calibration did not reduce variability across models but had an unexpected effect on modifying yield responses to temperature for some of the models. The high uncertainty in model responses indicates the limited applicability of individual models for climate change food projections. However, the ensemble mean of simulations across models was an effective tool to reduce the high uncertainty in soybean yield simulations associated with individual models and their parametrization. Ensemble mean yield responses to temperature and [CO2] were similar to those reported from the literature. Our study is the first demonstration of the benefits achieved from using an ensemble of grain legume models for climate change food projections, and highlights that further soybean model development with experiments under elevated [CO2] and temperature is needed to reduce the uncertainty from the individual models. KW - Agricultural Model Inter-comparison and Improvement Project (AgMIP); KW - Model ensemble KW - Model calibration KW - Temperature KW - Atmospheric CO2 KW - concentration KW - Legume model Y1 - 2022 U6 - https://doi.org/10.1016/j.eja.2022.126482 SN - 1161-0301 SN - 1873-7331 VL - 135 PB - Elsevier CY - Amsterdam ER -