TY - JOUR A1 - Tiseanu, Carmen A1 - Cojocaru, Bogdan A1 - Parvulescu, Vasile I. A1 - Sanchez-Dominguez, Margarita A1 - Primus, Philipp A. A1 - Boutonnet, Magali T1 - Order and disorder effects in nano-ZrO2 investigated by micro-Raman and spectrally and temporarily resolved photoluminescence JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Pure and europium (Eu3+) doped ZrO2 synthesized by an oil-in-water microemulsion reaction method were investigated by in situ and ex situ X-ray diffraction (XRD), ex situ Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), steady state and time-resolved photoluminescence (PL) spectroscopies. Based on the Raman spectra excited at three different wavelengths i.e. 488, 514 and 633 nm and measured in the spectral range of 150-4000 cm(-1) the correlation between the phonon spectra of ZrO2 and luminescence of europium is clearly evidenced. The PL investigations span a variety of steady-state and time resolved measurements recorded either after direct excitation of the Eu3+ f-f transitions or indirect excitation into UV charge-transfer bands. After annealing at 500 degrees C, the overall Eu3+ emission is dominated by Eu3+ located in tetragonal symmetry lattice sites with a crystal-field splitting of the D-5(0)-F-7(1) emission of 20 cm(-1). Annealing of ZrO2 at 1000 degrees C leads to a superposition of Eu3+ emissions from tetragonal and monoclinic lattice sites with monoclinic crystal-field splitting of 200 cm(-1) for the D-5(0)-F-7(1) transition. At all temperatures, a non-negligible amorphous/disordered content is also measured and determined to be of monoclinic nature. It was found that the evolutions with calcination temperature of the average PL lifetimes corresponding to europium emission in the tetragonal and monoclinic sites and the monoclinic phase content of the Eu3+ doped ZrO2 samples follow a similar trend. By use of specific excitation conditions, the distribution of europium on the amorphous/disordered surface or ordered/crystalline sites can be identified and related to the phase content of zirconia. The role of zirconia host as a sensitizer for the europium PL is also discussed in both tetragonal and monoclinic phases. Y1 - 2012 U6 - https://doi.org/10.1039/c2cp41946g SN - 1463-9076 VL - 14 IS - 37 SP - 12970 EP - 12981 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Tiseanu, Carmen A1 - Parvulescu, Vasile I. A1 - Boutonnet, Magali A1 - Cojocaru, Bogdan A1 - Primus, Philipp A. A1 - Teodorescu, Cristian M. A1 - Solans, Conchita A1 - Sanchez Dominguez, Margarita T1 - Surface versus volume effects in luminescent ceria nanocrystals synthesized by an oil-in-water microemulsion method JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Pure and europium (Eu3+) doped cerium dioxide (CeO2) nanocrystals have been synthesized by a novel oil-in-water microemulsion reaction method under soft conditions. In-situ X-ray diffraction and RAMAN spectroscopy, high-resolution transmission electron microscopy, UV/Vis diffuse-reflectance and Fourier transform infrared spectroscopy as well as time-resolved photoluminescence spectroscopy were used to characterize the nanaocrystals. The as-synthesized powders are nanocrystalline and have a narrow size distribution centered on 3 nm and high surface area of similar to 250 m(2) g(-1). Only a small fraction of the europium ions substitutes for the bulk, cubic Ce4+ sites in the europium-doped ceria nanocrystals. Upon calcination up to 1000 degrees C, a remarkable high surface area of similar to 120 m(2) g (-1) is preserved whereas an enrichment of the surface Ce4+ relative to Ce3+ ions and relative strong europium emission with a lifetime of similar to 1.8 ms and FWHM as narrow as 10 cm(-1) are measured. Under excitation into the UV and visible spectral range, the europium doped ceria nanocrystals display a variable emission spanning the orange-red wavelengths. The tunable emission is explained by the heterogeneous distribution of the europium dopants within the ceria nanocrystals coupled with the progressive diffusion of the europium ions from the surface to the inner ceria sites and the selective participation of the ceria host to the emission sensitization. Effects of the bulk-doping and impregnation with europium on the ceria host structure and optical properties are also discussed. Y1 - 2011 U6 - https://doi.org/10.1039/c1cp21135h SN - 1463-9076 VL - 13 IS - 38 SP - 17135 EP - 17145 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Chemura, Sitshengisiwe A1 - Haubitz, Toni A1 - Primus, Philipp A. A1 - Underberg, Martin A1 - Hülser, Tim A1 - Kumke, Michael Uwe T1 - Europium-doped Ceria-Gadolinium mixed oxides BT - PARAFAC analysis and high-resolution emission spectroscopy under cryogenic conditions for structural analysis JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - Gadolinium-doped ceria or gadolinium-stabilized ceria (GDC) is an important technical material due to its ability to conduct O2- ions, e.g., used in solid oxide fuel cells operated at intermediate temperature as an electrolyte, diffusion barrier, and electrode component. We have synthesized Ce1-xGdxO2-y:Eu3+ (0 <= x <= 0.4) nanoparticles (11-15 nm) using a scalable spray pyrolysis method, which allows the continuous large-scale technical production of such materials. Introducing Eu3+ ions in small amounts into ceria and GDC as spectroscopic probes can provide detailed information about the atomic structure and local environments and allows us to monitor small structural changes. This study presents a novel approach to structurally elucidate europium-doped Ce1-xGdxO2-y:Eu3+ nanoparticles by way of Eu3+ spectroscopy, processing the spectroscopic data with the multiway decomposition method parallel factor (PARAFAC) analysis. In order to perform the deconvolution of spectra, data sets of excitation wavelength, emission wavelength, and time are required. Room temperature, time-resolved emission spectra recorded at lambda(ex) = 464 nm show that Gd3+ doping results in significantly altered emission spectra compared to pure ceria. The PARAFAC analysis for the pure ceria samples reveals a high-symmetry species (which can also be probed directly via the CeO2 charge transfer band) and a low-symmetry species. The GDC samples yield two low-symmetry spectra in the same experiment. High-resolution emission spectra recorded under cryogenic conditions after probing the D-5(0)-F-7(0) transition at lambda(ex) = 575-583 nm revealed additional variation in the low-symmetry Eu3+ sites in pure ceria and GDC. The total luminescence spectra of CeO2-y:Eu3+ showed Eu3+ ions located in at least three slightly different coordination environments with the same fundamental symmetry, whereas the overall hypsochromic shift and increased broadening of the D-5(0)-F-7(0) excitation in the GDC samples, as well as the broadened spectra after deconvolution point to less homogeneous environments. The data of the Gd3+-containing samples indicates that the average charge density around the Eu3+ ions in the lattice is decreased with increasing Gd3+ and oxygen vacancy concentration. For reference, the Judd-Ofelt parameters of all spectra were calculated. PARAFAC proves to be a powerful tool to analyze lanthanide spectra in crystalline solid materials, which are characterized by numerous Stark transitions and where measurements usually yield a superposition of different contributions to any given spectrum. Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpca.0c03188 SN - 1089-5639 SN - 1520-5215 VL - 124 IS - 24 SP - 4972 EP - 4983 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Primus, Philipp-A. A1 - Kumke, Michael Uwe T1 - Flash photolysis study of complexes between salicylic acid and lanthanide ions in water JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - In the natural environment humic substances (HS) represent a major factor determining the speciation of metal ions, e.g., in the context of radionuclide migration. Here, due to their intrinsic sensitivity and selectivity, spectroscopic methods are often applied, requiring a fundamental understanding of the photophysical processes present in such HS-metal complexes. Complexes with different metal ions were studied using 2-hydroxybenzoic acid (2HB) as a model compound representing an important part of the chelating substructures in HS. In flash photolysis experiments under direct excitation of 2HB in the absence and the presence of different lanthanide ions, the generation and the decay of the 2HB triplet state, of the phenoxy radical, and of the solvated electron were monitored. Depending on the lanthanide ion different intracomplex processes were observed for these transient species including energy migration to and photoreduction of the lanthanide ion. The complexity of the intracomplex photophysical processes even for small molecules such as 2HB underlines the necessity to step-by-step approach the photochemical reactivity of HS by using suitable model compounds. Y1 - 2012 U6 - https://doi.org/10.1021/jp2043575 SN - 1089-5639 VL - 116 IS - 4 SP - 1176 EP - 1182 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Eisold, Ursula A1 - Kupstat, Annette A1 - Klier, Dennis Tobias A1 - Primus, Philipp-A. A1 - Pschenitza, Michael A1 - Niessner, Reinhard A1 - Knopp, Dietmar A1 - Kumke, Michael Uwe T1 - Probing the physicochemical interactions of 3-hydroxy-benzo[a]pyrene with different monoclonal and recombinant antibodies by use of fluorescence line-narrowing spectroscopy JF - Analytical & bioanalytical chemistry N2 - Characterization of interactions between antigens and antibodies is of utmost importance both for fundamental understanding of the binding and for development of advanced clinical diagnostics. Here, fluorescence line-narrowing (FLN) spectroscopy was used to study physicochemical interactions between 3-hydroxybenzo[a]pyrene (3OH-BaP, as antigen) and a variety of solvent matrices (as model systems) or anti-polycyclic aromatic hydrocarbon antibodies (anti-PAH). We focused the studies on the specific physicochemical interactions between 3OH-BaP and different, previously obtained, monoclonal and recombinant anti-PAH antibodies. Control experiments performed with non-binding monoclonal antibodies and bovine serum albumin (BSA) indicated that nonspecific interactions did not affect the FLN spectrum of 3OH-BaP. The spectral positions and relative intensities of the bands in the FLN spectra are highly dependent on the molecular environment of the 3OH-BaP. The FLN bands correlate with different vibrational modes of 3OH-BaP which are affected by interactions with the molecular environment (pi-pi interactions, H-bonding, or van-der-Waals forces). Although the analyte (3OH-BaP) was the same for all the antibodies investigated, different binding interactions could be identified from the FLN spectra on the basis of structural flexibility and conformational multiplicity of the antibodies' paratopes. KW - FLNS KW - Antibody KW - Paratope KW - Hapten KW - Polycyclic aromatic hydrocarbons Y1 - 2014 U6 - https://doi.org/10.1007/s00216-013-7584-8 SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 14 SP - 3387 EP - 3394 PB - Springer CY - Heidelberg ER -