TY - JOUR A1 - Contin, Andrea A1 - Frasca, Stefano A1 - Vivekananthan, Jeevanthi A1 - Leimkühler, Silke A1 - Wollenberger, Ursula A1 - Plumere, Nicolas A1 - Schuhmann, Wolfgang T1 - A pH Responsive Redox Hydrogel for Electrochemical Detection of Redox Silent Biocatalytic Processes. Control of Hydrogel Solvation JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis N2 - The control of bioelectrocatalytic processes by external stimuli for the indirect detection of non-redox active species was achieved using an esterase and a redox enzyme both integrated within a redox hydrogel. The poly( vinyl) imidazole Os(bpy)(2)Cl hydrogel displays pH-responsive properties. The esterase catalysed reaction leads to a local pH decrease causing protonation of imidazole moieties thus increasing hydrogel solvation and mobility of the tethered Os-complexes. This is the key step to enable improved electron transfer between an aldehyde oxidoreductase and the polymer-bound Os-complexes. The off-on switch is further integrated in a biofuel cell system for self-powered signal generation. KW - pH responsive hydrogel KW - External stimuli KW - Biofuel cell KW - Self-powered biosensor KW - Solvation Y1 - 2015 U6 - https://doi.org/10.1002/elan.201400621 SN - 1040-0397 SN - 1521-4109 VL - 27 IS - 4 SP - 938 EP - 944 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Pinyou, Piyanut A1 - Ruff, Adrian A1 - Poeller, Sascha A1 - Barwe, Stefan A1 - Nebel, Michaela A1 - Alburquerque, Natalia Guerrero A1 - Wischerhoff, Erik A1 - Laschewsky, Andre A1 - Schmaderer, Sebastian A1 - Szeponik, Jan A1 - Plumere, Nicolas A1 - Schuhmann, Wolfgang T1 - Thermoresponsive amperometric glucose biosensor JF - Biointerphases N2 - The authors report on the fabrication of a thermoresponsive biosensor for the amperometric detection of glucose. Screen printed electrodes with heatable gold working electrodes were modified by a thermoresponsive statistical copolymer [polymer I: poly(omega-ethoxytriethylenglycol methacrylate-omega-3-(N,N-dimethyl-N-2-methacryloyloxyethyl ammonio) propanesulfonate-co-omega-butoxydiethylenglycol methacrylate-co-2-(4-benzoyl-phenoxy)ethyl methacrylate)] with a lower critical solution temperature of around 28 degrees C in aqueous solution via electrochemically induced codeposition with a pH-responsive redox-polymer [polymer II: poly(glycidyl methacrylate-co-allyl methacrylate-co-poly(ethylene glycol) methacrylate-co-butyl acrylate-co-2-(dimethylamino) ethyl methacrylate)-[Os(bpy)(2)(4-(((2-(2-(2-aminoethoxy) ethoxy) ethyl) amino) methyl)-N,N-dimethylpicolinamide)](2+)] and pyrroloquinoline quinone-soluble glucose dehydrogenase acting as biological recognition element. Polymer II bears covalently bound Os-complexes that act as redox mediators for shuttling electrons between the enzyme and the electrode surface. Polymer I acts as a temperature triggered immobilization matrix. Probing the catalytic current as a function of the working electrode temperature shows that the activity of the biosensor is dramatically reduced above the phase transition temperature of polymer I. Thus, the local modulation of the temperature at the interphase between the electrode and the bioactive layer allows switching the biosensor from an on-to an off-state without heating of the surrounding analyte solution. (C) 2015 American Vacuum Society. Y1 - 2016 U6 - https://doi.org/10.1116/1.4938382 SN - 1934-8630 SN - 1559-4106 VL - 11 PB - American Institute of Physics CY - Melville ER -