TY - GEN A1 - Plehn, Thomas A1 - Megow, Jörg A1 - May, Volkhard T1 - Concerted charge and energy transfer processes in a highly flexible fullerene–dye system BT - a mixed quantum–classical study N2 - Photoinduced excitation energy transfer and accompanying charge separation are elucidated for a supramolecular system of a single fullerene covalently linked to six pyropheophorbide-a dye molecules. Molecular dynamics simulations are performed to gain an atomistic picture of the architecture and the surrounding solvent. Excitation energy transfer among the dye molecules and electron transfer from the excited dyes to the fullerene are described by a mixed quantum–classical version of the Förster rate and the semiclassical Marcus rate, respectively. The mean characteristic time of energy redistribution lies in the range of 10 ps, while electron transfer proceeds within 150 ps. In between, on a 20 to 50 ps time-scale, conformational changes take place in the system. This temporal hierarchy of processes guarantees efficient charge separation, if the structure is exposed to a solvent. The fast energy transfer can adopt the dye excitation to the actual conformation. In this sense, the probability to achieve charge separation is large enough since any dominance of unfavorable conformations that exhibit a large dye–fullerene distance is circumvented. And the slow electron transfer may realize an averaging with respect to different conformations. To confirm the reliability of our computations, ensemble measurements on the charge separation dynamics are simulated and a very good agreement with the experimental data is obtained. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 279 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-98791 ER - TY - JOUR A1 - Plehn, Thomas A1 - Megow, Jörg A1 - May, Volkhard T1 - Concerted charge and energy transfer processes in a highly flexible fullerene-dye system: a mixed quantum-classical study JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Photoinduced excitation energy transfer and accompanying charge separation are elucidated for a supramolecular system of a single fullerene covalently linked to six pyropheophorbide-a dye molecules. Molecular dynamics simulations are performed to gain an atomistic picture of the architecture and the surrounding solvent. Excitation energy transfer among the dye molecules and electron transfer from the excited dyes to the fullerene are described by a mixed quantum-classical version of the Forster rate and the semiclassical Marcus rate, respectively. The mean characteristic time of energy redistribution lies in the range of 10 ps, while electron transfer proceeds within 150 ps. In between, on a 20 to 50 ps time-scale, conformational changes take place in the system. This temporal hierarchy of processes guarantees efficient charge separation, if the structure is exposed to a solvent. The fast energy transfer can adopt the dye excitation to the actual conformation. In this sense, the probability to achieve charge separation is large enough since any dominance of unfavorable conformations that exhibit a large dye-fullerene distance is circumvented. And the slow electron transfer may realize an averaging with respect to different conformations. To confirm the reliability of our computations, ensemble measurements on the charge separation dynamics are simulated and a very good agreement with the experimental data is obtained. Y1 - 2014 U6 - https://doi.org/10.1039/c4cp01081g SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 25 SP - 12949 EP - 12958 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Plehn, Thomas A1 - Ziemann, Dirk A1 - Megow, Jörg A1 - May, Volkhard T1 - Frenkel to Wannier-Mott Exciton Transition: Calculation of FRET Rates for a Tubular Dye Aggregate Coupled to a CdSe Nanocrystal JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - The coupling is investigated of Frenkel-like exciton states formed in a tubular dye aggregate (TDA) to Wannier-Mott-like excitations of a semiconductor nanocrystal (NC). A double well TDA of the cyanine dye C8S3 with a length of 63.4 nm and a diameter of 14.7 nm is considered. The TDA interacts with a spherical Cd819Te630 NC of 4.5 nm diameter. Electronic excitations of the latter are described in a tight-binding model of the electrons and holes combined with a configuration interaction scheme to consider their mutual Coulomb coupling. To achieve a proper description of TDA excitons, a recently determined structure has been used, the energy transfer coupling has been defined as a screened interaction of atomic centered transition charges, and the site energies of the dye molecules have been the subject of a polarization correction. Even if both nanoparticles are in direct contact, the energy transfer coupling between the exciton levels of the TDA and of the NC stays below 1 meV. It results in FRET-type energy transfer with rates somewhat larger than 10(9)/s. They coincide rather well with recent preliminary experiments. Y1 - 2015 U6 - https://doi.org/10.1021/jp5111696 SN - 1520-6106 VL - 119 IS - 24 SP - 7467 EP - 7472 PB - American Chemical Society CY - Washington ER -