TY - JOUR A1 - Grotheer, Hendrik A1 - Meyer, Vera A1 - Riedel, Theran A1 - Pfalz, Gregor A1 - Mathieu, Lucie A1 - Hefter, Jens H. A1 - Gentz, Torben A1 - Lantuit, Hugues A1 - Mollennauer, Gesine A1 - Fritz, Michael T1 - Burial and origin of permafrost-derived carbon in the nearshore zone of the southern Canadian Beaufort Sea JF - Geophysical research letters N2 - Detailed organic geochemical and carbon isotopic (delta C-13 and Delta C-14) analyses are performed on permafrost deposits affected by coastal erosion (Herschel Island, Canadian Beaufort Sea) and adjacent marine sediments (Herschel Basin) to understand the fate of organic carbon in Arctic nearshore environments. We use an end-member model based on the carbon isotopic composition of bulk organic matter to identify sources of organic carbon. Monte Carlo simulations are applied to quantify the contribution of coastal permafrost erosion to the sedimentary carbon budget. The models suggest that similar to 40% of all carbon released by local coastal permafrost erosion is efficiently trapped and sequestered in the nearshore zone. This highlights the importance of sedimentary traps in environments such as basins, lagoons, troughs, and canyons for the carbon sequestration in previously poorly investigated, nearshore areas. Plain Language Summary Increasing air and sea surface temperatures at high latitudes leads to accelerated thaw, destabilization, and erosion of perennially frozen soils (i.e., permafrost), which are often rich in organic carbon. Coastal erosion leads to an increased mobilization of organic carbon into the Arctic Ocean, which there can be converted into greenhouse gases and may therefore contribute to further warming. Carbon decomposition can be limited if organic matter is efficiently deposited on the seafloor, buried in marine sediments, and thus removed from the short-term carbon cycle. Basins, canyons, and troughs near the coastline can serve as sediment traps and potentially accommodate large quantities of organic carbon along the Arctic coast. Here we use biomarkers (source-specific molecules), stable carbon isotopes, and radiocarbon to identify the sources of organic carbon in the nearshore zone of the southern Canadian Beaufort Sea near Herschel Island. We quantify the contribution of coastal permafrost erosion to the sedimentary carbon budget of the area and estimate that more than a third of all carbon released by local permafrost erosion is efficiently trapped in marine sediments. This highlights the importance of regional sediment traps for carbon sequestration. Y1 - 2020 U6 - https://doi.org/10.1029/2019GL085897 SN - 0094-8276 SN - 1944-8007 VL - 47 IS - 3 PB - Wiley CY - Hoboken, NJ ER - TY - THES A1 - Pfalz, Gregor T1 - Advancing knowledge of Arctic lake system dynamics: A data-driven perspective on spatiotemporal patterns T1 - Fortschritte im Verständnis der Dynamik arktischer Seesysteme: Eine datengetriebene Perspektive auf raumzeitliche Muster N2 - Ecosystems play a pivotal role in addressing climate change but are also highly susceptible to drastic environmental changes. Investigating their historical dynamics can enhance our understanding of how they might respond to unprecedented future environmental shifts. With Arctic lakes currently under substantial pressure from climate change, lessons from the past can guide our understanding of potential disruptions to these lakes. However, individual lake systems are multifaceted and complex. Traditional isolated lake studies often fail to provide a global perspective because localized nuances—like individual lake parameters, catchment areas, and lake histories—can overshadow broader conclusions. In light of these complexities, a more nuanced approach is essential to analyze lake systems in a global context. A key to addressing this challenge lies in the data-driven analysis of sedimentological records from various northern lake systems. This dissertation emphasizes lake systems in the northern Eurasian region, particularly in Russia (n=59). For this doctoral thesis, we collected sedimentological data from various sources, which required a standardized framework for further analysis. Therefore, we designed a conceptual model for integrating and standardizing heterogeneous multi-proxy data into a relational database management system (PostgreSQL). Creating a database from the collected data enabled comparative numerical analyses between spatially separated lakes as well as between different proxies. When analyzing numerous lakes, establishing a common frame of reference was crucial. We achieved this by converting proxy values from depth dependency to age dependency. This required consistent age calculations across all lakes and proxies using one age-depth modeling software. Recognizing the broader implications and potential pitfalls of this, we developed the LANDO approach ("Linked Age and Depth Modelling"). LANDO is an innovative integration of multiple age-depth modeling software into a singular, cohesive platform (Jupyter Notebook). Beyond its ability to aggregate data from five renowned age-depth modeling software, LANDO uniquely empowers users to filter out implausible model outcomes using robust geoscientific data. Our method is not only novel but also significantly enhances the accuracy and reliability of lake analyses. Considering the preceding steps, this doctoral thesis further examines the relationship between carbon in sediments and temperature over the last 21,000 years. Initially, we hypothesized a positive correlation between carbon accumulation in lakes and modelled paleotemperature. Our homogenized dataset from heterogeneous lakes confirmed this association, even if the highest temperatures throughout our observation period do not correlate with the highest carbon values. We assume that rapid warming events contribute more to high accumulation, while sustained warming leads to carbon outgassing. Considering the current high concentration of carbon in the atmosphere and rising temperatures, ongoing climate change could cause northern lake systems to contribute to a further increase in atmospheric carbon (positive feedback loop). While our findings underscore the reliability of both our standardized data and the LANDO method, expanding our dataset might offer even greater assurance in our conclusions. N2 - Ökosysteme spielen eine zentrale Rolle bei der Bewältigung des Klimawandels, gelten jedoch auch als äußerst anfällig für drastische Umweltveränderungen. Die Erforschung ihrer historischen Dynamiken kann unser Verständnis darüber verbessern, wie sich zukünftige Veränderungen angesichts beispielloser Umweltveränderungen auf sie auswirken können. Angesichts des enormen Stresses, dem arktische Seen durch den Klimawandel ausgesetzt sind, können konkrete Fälle aus der Vergangenheit helfen, mögliche Schwankungen im Ökosystem des Sees besser zu verstehen und zu deuten. Einzelne Seesysteme unterliegen jedoch einer inhärenten Komplexität und vielschichtigen Beschaffenheit. Klassische Einzelanalysen von Seen liefern oft keine globale Perspektive, da lokale Besonderheiten – wie individuelle Seeparameter, Einzugsgebiete und Seehistorien – allgemeinere Schlussfolgerungen überlagern können. Eine differenzierte Herangehensweise ist hierbei erforderlich, um Seesysteme im globalen Kontext angemessen zu analysieren. Ein Schlüssel zur Bewältigung dieser Herausforderung ist die datenwissenschaftliche Analyse von sedimentologischen Daten aus mehreren nördlichen Seesystemen. Diese Dissertation fokussiert sich dabei auf das Gebiet des nördlichen Eurasiens mit einem besonderen Fokus auf Seesystem in Russland (n=59). Die gesammelten sedimentologischen Daten für diese Doktorarbeit mussten hierfür zunächst standardisiert und homogenisiert werden. Hierfür wurde ein konzeptuelles Modell für die Integration und Standardisierung von heterogenen Multi-Proxy-Daten in ein relationales Datenbankverwaltungssystem (PostgreSQL) entworfen. Die Erstellung einer Datenbank aus der gesammelten Datenkollektion ermöglichte die numerische, vergleichende Analyse zwischen räumlich getrennten Seen als auch zwischen verschiedenen Proxys. Eine Analyse von mehreren Seen erforderte zudem eine gemeinsame Analyseebene, welche wir durch die Umwandlung von einer Tiefenabhängigkeit zu Altersabhängigkeit der Proxywerte erreichten. Diese bedurfte aber, dass die zugehörigen Alter von Proxywerte von allen Seen mit demselben Verfahren einer Alterstiefenmodellsoftware berechnet werden müssen. Angesichts der weitreichenden Implikationen und potenziellen Fallstricke entwickelten wir den LANDO-Ansatz („Linked Age and Depth Modelling“). LANDO stellt eine innovative Integration mehrerer Alters-Tiefen-Modellierungssoftware in eine einheitliche, kohärente Plattform (Jupyter Notebook) dar. Neben seiner Fähigkeit, Daten von fünf renommierten Alters-Tiefen-Modellierungssoftware zu aggregieren, ermöglicht LANDO es den Nutzern auf einzigartige Weise, unbegründete Modellergebnisse anhand robuster geowissenschaftlicher Daten herauszufiltern. Unsere Methode ist nicht nur neuartig, sondern steigert auch signifikant die Genauigkeit und Zuverlässigkeit von Seeanalysen. Schlussendlich unter Berücksichtigung der vorangegangenen Schritte betrachtet die Doktorarbeit den Zusammenhang zwischen Kohlenstoff in Sedimenten und Temperatur über die letzten 21 000 Jahre. Zunächst nehmen wir an, dass es eine positive Korrelation zwischen Kohlenstoffakkumulation in Seen und modellierter Paläo-Temperatur gibt. Diese kann dank des homogenisierten Datensatzes von heterogenen Seen bestätigt werden, wenn auch die höchsten Temperaturen über unseren Betrachtungszeitraum nicht korrelieren mit den höchsten Kohlenstoffwerten. Wir gehen davon aus, dass schnelle Erwärmungsereignisse eher zu einer hohen Akkumulation beitragen, während bestehende Erwärmung eher zu einer Ausgasung von Kohlenstoff führt. In Anbetracht der aktuellen hohen Konzentration von Kohlenstoff in der Atmosphäre und der steigenden Temperaturen, können bei einem weiterführenden Klimawandel nördliche Seesysteme zu einem weiteren Anstieg von atmosphärischem Kohlenstoff führen (positive Feedbackschleife). Obwohl die bemerkenswerten Ergebnisse zeigen, dass unser Ansatz aus standardisierten Daten und LANDO zuverlässig ist, könnte eine größere Datenmenge das Vertrauen in die Ergebnisse noch weiter stärken. KW - Arcitc KW - lake systems KW - paleotemperature KW - carbon KW - climate data science KW - Paläolimnologie KW - Eurasien KW - Paläoklimatologie KW - Seesedimente KW - Klimadatenwissenschaften KW - Kohlenstoff Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-636554 ER -