TY - JOUR A1 - Bhat, Javaid Y. A1 - Milicic, Goran A1 - Thieulin-Pardo, Gabriel A1 - Bracher, Andreas A1 - Maxwell, Andrew A1 - Ciniawsky, Susanne A1 - Müller-Cajar, Oliver A1 - Engen, John R. A1 - Hartl, F. Ulrich A1 - Wendler, Petra A1 - Hayer-Hartl, Manajit T1 - Mechanism of Enzyme Repair by the AAA(+) Chaperone Rubisco Activase JF - Molecular cell N2 - How AAA(+) chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA(+) protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair. Y1 - 2017 U6 - https://doi.org/10.1016/j.molcel.2017.07.004 SN - 1097-2765 SN - 1097-4164 VL - 67 SP - 744 EP - 756 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Warschburger, Petra A1 - Petersen, Ann-Christin A1 - von Rezori, Roman Enzio A1 - Buchallik, Friederike A1 - Baumeister, Harald A1 - Holl, Reinhard A1 - Minden, Kirsten A1 - Müller-​Stierlin, Annabel Sandra A1 - Reinauer, Christina A1 - Staab, Doris A1 - COACH consortium, T1 - A prospective investigation of developmental trajectories of psychosocial adjustment in adolescents facing a chronic condition - study protocol of an observational, multi-center study JF - BMC Pediatrics N2 - Background Relatively little is known about protective factors and the emergence and maintenance of positive outcomes in the field of adolescents with chronic conditions. Therefore, the primary aim of the study is to acquire a deeper understanding of the dynamic process of resilience factors, coping strategies and psychosocial adjustment of adolescents living with chronic conditions. Methods/design We plan to consecutively recruit N = 450 adolescents (12–21 years) from three German patient registries for chronic conditions (type 1 diabetes, cystic fibrosis, or juvenile idiopathic arthritis). Based on screening for anxiety and depression, adolescents are assigned to two parallel groups – “inconspicuous” (PHQ-9 and GAD-7 < 7) vs. “conspicuous” (PHQ-9 or GAD-7 ≥ 7) – participating in a prospective online survey at baseline and 12-month follow-up. At two time points (T1, T2), we assess (1) intra- and interpersonal resiliency factors, (2) coping strategies, and (3) health-related quality of life, well-being, satisfaction with life, anxiety and depression. Using a cross-lagged panel design, we will examine the bidirectional longitudinal relations between resiliency factors and coping strategies, psychological adaptation, and psychosocial adjustment. To monitor Covid-19 pandemic effects, participants are also invited to take part in an intermediate online survey. Discussion The study will provide a deeper understanding of adaptive, potentially modifiable processes and will therefore help to develop novel, tailored interventions supporting a positive adaptation in youths with a chronic condition. These strategies should not only support those at risk but also promote the maintenance of a successful adaptation. Trial registration German Clinical Trials Register (DRKS), no. DRKS00025125. Registered on May 17, 2021. KW - Chronic conditions KW - Adolescents KW - Prospective KW - Quality of life KW - Resiliency KW - Coping KW - Protective factors KW - Type 1 diabetes KW - Juvenile idiopathic arthritis KW - Cystic fibrosis Y1 - 2021 U6 - https://doi.org/10.1186/s12887-021-02869-9 SN - 1471-2431 VL - 21 SP - 1 EP - 13 PB - BMC pediatrics CY - London ER - TY - JOUR A1 - Müller, Katharina A1 - Foerstendorf, Harald A1 - Steudtner, Robin A1 - Tsushima, Satoru A1 - Kumke, Michael Uwe A1 - Lefèvre, Grégory A1 - Rothe, Jörg A1 - Mason, Harris A1 - Szabó, Zoltán A1 - Yang, Ping A1 - Adam, Christian K. R. A1 - André, Rémi A1 - Brennenstuhl, Katlen A1 - Chiorescu, Ion A1 - Cho, Herman M. A1 - Creff, Gaëlle A1 - Coppin, Frédéric A1 - Dardenne, Kathy A1 - Den Auwer, Christophe A1 - Drobot, Björn A1 - Eidner, Sascha A1 - Hess, Nancy J. A1 - Kaden, Peter A1 - Kremleva, Alena A1 - Kretzschmar, Jerome A1 - Krüger, Sven A1 - Platts, James A. A1 - Panak, Petra A1 - Polly, Robert A1 - Powell, Brian A. A1 - Rabung, Thomas A1 - Redon, Roland A1 - Reiller, Pascal E. A1 - Rösch, Notker A1 - Rossberg, André A1 - Scheinost, Andreas C. A1 - Schimmelpfennig, Bernd A1 - Schreckenbach, Georg A1 - Skerencak-Frech, Andrej A1 - Sladkov, Vladimir A1 - Solari, Pier Lorenzo A1 - Wang, Zheming A1 - Washton, Nancy M. A1 - Zhang, Xiaobin T1 - Interdisciplinary Round-Robin Test on molecular spectroscopy of the U(VI) Acetate System JF - ACS omega / American Chemical Society N2 - A comprehensive molecular analysis of a simple aqueous complexing system. U(VI) acetate. selected to be independently investigated by various spectroscopic (vibrational, luminescence, X-ray absorption, and nuclear magnetic resonance spectroscopy) and quantum chemical methods was achieved by an international round-robin test (RRT). Twenty laboratories from six different countries with a focus on actinide or geochemical research participated and contributed to this scientific endeavor. The outcomes of this RRT were considered on two levels of complexity: first, within each technical discipline, conformities as well as discrepancies of the results and their sources were evaluated. The raw data from the different experimental approaches were found to be generally consistent. In particular, for complex setups such as accelerator-based X-ray absorption spectroscopy, the agreement between the raw data was high. By contrast, luminescence spectroscopic data turned out to be strongly related to the chosen acquisition parameters. Second, the potentials and limitations of coupling various spectroscopic and theoretical approaches for the comprehensive study of actinide molecular complexes were assessed. Previous spectroscopic data from the literature were revised and the benchmark data on the U(VI) acetate system provided an unambiguous molecular interpretation based on the correlation of spectroscopic and theoretical results. The multimethodologic approach and the conclusions drawn address not only important aspects of actinide spectroscopy but particularly general aspects of modern molecular analytical chemistry. Y1 - 2019 U6 - https://doi.org/10.1021/acsomega.9b00164 SN - 2470-1343 VL - 4 IS - 5 SP - 8167 EP - 8177 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Bapolisi, Alain Murhimalika A1 - Kielb, Patrycja A1 - Bekir, Marek A1 - Lehnen, Anne-Catherine A1 - Radon, Christin A1 - Laroque, Sophie A1 - Wendler, Petra A1 - Müller-Werkmeister, Henrike A1 - Hartlieb, Matthias T1 - Antimicrobial polymers of linear and bottlebrush architecture BT - Probing the membrane interaction and physicochemical properties JF - Macromolecular rapid communications : publishing the newsletters of the European Polymer Federation N2 - Polymeric antimicrobial peptide mimics are a promising alternative for the future management of the daunting problems associated with antimicrobial resistance. However, the development of successful antimicrobial polymers (APs) requires careful control of factors such as amphiphilic balance, molecular weight, dispersity, sequence, and architecture. While most of the earlier developed APs focus on random linear copolymers, the development of APs with advanced architectures proves to be more potent. It is recently developed multivalent bottlebrush APs with improved antibacterial and hemocompatibility profiles, outperforming their linear counterparts. Understanding the rationale behind the outstanding biological activity of these newly developed antimicrobials is vital to further improving their performance. This work investigates the physicochemical properties governing the differences in activity between linear and bottlebrush architectures using various spectroscopic and microscopic techniques. Linear copolymers are more solvated, thermo-responsive, and possess facial amphiphilicity resulting in random aggregations when interacting with liposomes mimicking Escheria coli membranes. The bottlebrush copolymers adopt a more stable secondary conformation in aqueous solution in comparison to linear copolymers, conferring rapid and more specific binding mechanism to membranes. The advantageous physicochemical properties of the bottlebrush topology seem to be a determinant factor in the activity of these promising APs. KW - antimicrobial polymers KW - bottlebrush copolymers KW - liposomes KW - membrane KW - interactions KW - quartz crystal microbalance Y1 - 2022 U6 - https://doi.org/10.1002/marc.202200288 SN - 1521-3927 SN - 1022-1336 VL - 43 IS - 19 PB - Wiley-VCH CY - Weinheim ER -