TY - JOUR A1 - Aichner, Bernhard A1 - Hilt, Sabine A1 - Perillon, Cecile A1 - Gillefalk, Mikael A1 - Sachse, Dirk T1 - Biosynthetic hydrogen isotopic fractionation factors during lipid synthesis in submerged aquatic macrophytes: Effect of groundwater discharge and salinity JF - Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry N2 - Sedimentary lipid biomarkers have become widely used tools for reconstructing past climatic and ecological changes due to their ubiquitous occurrence in lake sediments. In particular, the hydrogen isotopic composition (expressed as delta D values) of leaf wax lipids derived from terrestrial plants has been a focus of research during the last two decades and the understanding of competing environmental and plant physiological factors influencing the delta D values has greatly improved. Comparatively less attention has been paid to lipid biomarkers derived from aquatic plants, although these compounds are abundant in many lacustrine sediments. We therefore conducted a field and laboratory experiment to study the effect of salinity and groundwater discharge on the isotopic composition of aquatic plant biomarkers. We analyzed samples of the common submerged plant species, Potamogeton pectinatus (sago pondweed), which has a wide geographic distribution and can tolerate high salinity. We tested the effect of groundwater discharge (characterized by more negative delta D values relative to lake water) and salinity on the delta D values of n-alkanes from P. pectinatus by comparing plants (i) collected from the oligotrophic freshwater Lake Stechlin (Germany) at shallow littoral depth from locations with and without groundwater discharge, and (ii) plants grown from tubers collected from the eutrophic Lake Muggelsee in nutrient solution at four salinity levels. Isotopically depleted groundwater did not have a significant influence on the delta D values of n-alkanes in Lake Stechlin P. pectinatus and calculated isotopic fractionation factors epsilon(l/w) between lake water and n-alkanes averaged -137 +/- 9%(n-C-23), -136 +/- 7%(n-C-25) and -131 +/- 6%(n-C-27), respectively. Similar epsilon values were calculated for plants from Lake Muggelsee grown in freshwater nutrient solution (-134 +/- 11% for n-C-23), while greater fractionation was observed at increased salinity values of 10 (163 +/- 12%) and 15(-172 +/- 15%). We therefore suggest an average e value of -136 +/- 9% between source water and the major n-alkanes in P. pectinatus grown under freshwater conditions. Our results demonstrate that isotopic fractionation can increase by 30-40% at salinity values 10 and 15. These results could be explained either by inhibited plant growth at higher salinity, or by metabolic adaptation to salt stress that remain to be elucidated. A potential salinity effect on dD values of aquatic lipids requires further examination, since this would impact on the interpretation of downcore isotopic data in paleohydrologic studies. (C) 2017 Elsevier Ltd. All rights reserved. Y1 - 2017 U6 - https://doi.org/10.1016/j.orggeochem.2017.07.021 SN - 0146-6380 VL - 113 SP - 10 EP - 16 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Périllon, Cécile A1 - Pöschke, Franziska A1 - Lewandowski, Jörg A1 - Hupfer, Michael A1 - Hilt, Sabine T1 - Stimulation of epiphyton growth by lacustrine groundwater discharge to an oligo-mesotrophic hard-water lake JF - Freshwater Science N2 - Periphyton is a major contributor to aquatic primary production and often competes with phytoplankton and submerged macrophytes for resources. In nutrient-limited environments, mobilization of sediment nutrients by groundwater can significantly affect periphyton (including epiphyton) development in shallow littoral zones and may affect other lake primary producers. We hypothesized that epiphyton growth in the littoral zone of temperate oligomesotrophic hard-water lakes could be stimulated by nutrient (especially P) supply via lacustrine groundwater discharge (LGD). We compared the dry mass, chlorophyll a (chl a), and nutrient content of epiphyton grown on artificial substrates at different sites in a groundwater-fed lake and in experimental chambers with and without LGD. During the spring-summer periods, epiphyton accumulated more biomass, especially algae, in littoral LGD sites and in experimental chambers with LGD compared to controls without LGD. Epiphyton chl a accumulation reached up to 46 mg chl a/m(2) after 4 wk when exposed to LGD, compared to a maximum of 23 mg chl a/m(2) at control (C) sites. In the field survey, differences in epiphyton biomass between LGD and C sites were most pronounced at the end of summer, when epilimnetic P concentrations were lowest and epiphyton C:P ratios indicated P limitation. Groundwater-borne P may have facilitated epiphyton growth on macrophytes and periphyton growth on littoral sediments. Epiphyton stored up to 35 mg P/m(2) in 4 wk (which corresponds to 13% of the total P content of the littoral waters), preventing its use by phytoplankton, and possibly contributing to the stabilization of a clear-water state. However, promotion of epiphyton growth by LGD may have contributed to an observed decline in macrophyte abundance caused by epiphyton shading and a decreased resilience of small charophytes to drag forces in shallow littoral areas of the studied lake in recent decades. KW - lacustrine groundwater discharge KW - periphyton KW - littoral KW - nutrients KW - benthic KW - macrophytes KW - seepage Y1 - 2017 U6 - https://doi.org/10.1086/692832 SN - 2161-9549 SN - 2161-9565 VL - 36 SP - 555 EP - 570 PB - Univ. of Chicago Press CY - Chicago ER -