TY - JOUR A1 - Martin-Puertas, Celia A1 - Lauterbach, Stefan A1 - Allen, Judy R. M. A1 - Perez, Marta A1 - Blockley, Simon A1 - Wulf, Sabine A1 - Huntley, Brian A1 - Brauer, Achim T1 - Initial Mediterranean response to major climate reorganization during the last interglacial-glacial transition JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Millennial-scale Dansgaard Oeschger (DO) variability at northern high latitudes has influenced climatic and environmental conditions in the Mediterranean during the last glacial period. There is evidence that the hemispheric transmission of the DO variability occurred at the end of DO event 25; however, the exact timing and the trigger that activated the environmental response in the Mediterranean remains incompletely understood. Here, we provide evidence that the clear millennial-scale teleconnection between Greenland and the Mediterranean started at similar to 111.4 ka BP and was initiated by a sub-millennial scale cooling in Greenland (GI-25b). High-resolution sediment proxies and the pollen record of Lago Grande di Monticchio (MON), Italy, reflect climatic instability during the last millennium of the last interglacial, which was characterised by a first and short cooling episode (MON 1) at 111.44 +/- 0.69 ka BP, coinciding with the Greenland cold sub-event GI-25b in duration and timing (within dating uncertainties). MON and Greenland (NorthGRIP ice core) also agree in recording a subsequent warm rebound phase that abruptly culminated in the stadial MON 2/GS-25, marking the transition into the last glacial period. Our results show that the GI-25b triggered an early environmental response at MON to centennial-scale climate change in Greenland as a prelude to the millennial-scale teleconnection that was maintained during the glacial period. KW - Palaeoclimatology KW - Last interglacial-glacial transition KW - Millennial-scale variability KW - Mediterranean KW - Varved sediments Y1 - 2019 U6 - https://doi.org/10.1016/j.quascirev.2019.05.019 SN - 0277-3791 VL - 215 SP - 232 EP - 241 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Melnick, Daniel A1 - Yildirim, Cengiz A1 - Hillemann, Christian A1 - Garcin, Yannick A1 - Ciner, T. Attila A1 - Perez-Gussinye, Marta A1 - Strecker, Manfred T1 - Slip along the Sultanhani Fault in Central Anatolia from deformed Pleistocene shorelines of palaeo-lake Konya and implications for seismic hazards in low-strain regions JF - Geophysical journal international N2 - Central Anatolia is a low-relief, high-elevation region where decadal-scale deformation rates estimated from space geodesy suggest low strain rates within a stiff microplate. However, numerous Quaternary faults have been mapped within this low-strain region and estimating their slip rate and seismic potential is important for hazard assessments in an area of increasing infrastructural development. Here we focus on the Sultanhani Fault (SF), which constitutes an integral part of the Eskisehir-Cihanbeyli Fault System, and use deformed maximum highstand shorelines of palaeo-lake Konya to estimate tectonic slip rates at millennial scale. Some of these shorelines were previously interpreted as fault scarps, but we provide conclusive evidence for their erosional origin. We found that shoreline-angle elevations estimated from differential GPS profiles record vertical displacements of 10.2 m across the SF. New radiocarbon ages of lacustrine molluscs suggest 22.4 m of relative lake-level fall between 22.1 +/- 0.3 and 21.7 +/- 0.4 cal. kaBP, constraining the timing of abrupt abandonment of the highstand shoreline. Models of lithospheric rebound associated with regressions of the Tuz Golu and Konya palaeolakes predict only similar to 1 m of regional-scale uplift across the Konya Basin. Dislocation models of displaced shorelines suggest fault-slip rates of 1.5 and 1.8 mm yr(-1) for planar and listric fault geometries, respectively, providing reasonable results for the latter. We found fault scarps in the Nasuhpinar mudflat that likely represent the most recent ground-breaking rupture of the SF, with an average vertical displacement of 1.2 +/- 0.5 m estimated from 54 topographic profiles, equivalent to a M similar to 6.5-6.9 earthquake based on empirical scaling laws. If such events were characteristic during the ultimate 21 ka, a relatively short recurrence time of similar to 800-900 yr would be needed to account for the millennial slip rate. Alternatively, the fault scarp at Nasuhpinar might represent a larger earthquake requiring more frequent smaller events to account for the millennial rate. The relatively fast slip rate of the SF over the past 21 ka is unlikely to have persisted over longer timescales and might reflect spatiotemporal variations in deformation rates within kinematically-linked fault systems within Central Anatolia, or a transient perturbation to the local stress field or fault strength. Such perturbation might have been related to climatically controlled changes in surface and near-surface loads and by interactions among the different tectonic processes that have been proposed to drive the overall slow uplift and associated extension in the Central Anatolian Plateau. KW - Seismic cycle KW - Geomorphology KW - Continental neotectonics KW - Earthquake hazards KW - Tectonics and climatic interactions Y1 - 2017 U6 - https://doi.org/10.1093/gji/ggx074 SN - 0956-540X SN - 1365-246X VL - 209 SP - 1431 EP - 1454 PB - Oxford Univ. Press CY - Oxford ER -