TY - JOUR A1 - Wambsganss, Joachim A1 - Bode, Paul A1 - Ostriker, Jeremiah P. T1 - Giant arc statistics in concord with a concordance lambda cold dark matter universe N2 - The frequency of giant arcs - highly distorted and strongly gravitationally lensed background galaxies - is a powerful test for cosmological models. Previous comparisons of arc statistics for the currently favored concordance cosmological model ( lambda cold dark matter [LCDM]) with observations have shown an apparently large discrepancy in underpredicting cluster arcs. We present new ray-shooting results, based on a high-resolution (1024(3) particles in a 320 h(-1) Mpc box) large-scale structure simulation normalized to the Wilkinson Microwave Anisotropy Probe (WMAP) observations. We follow light rays through a pseudo - three-dimensional matter distribution approximated by up to 38 lens planes and evaluate the occurrence of arcs for various source redshifts. We find that the frequency of strongly lensed background galaxies is a steep function of source redshift: the optical depth for giant arcs increases by a factor of 5 when background sources are moved from redshift z(s) = 1.0 to 1.5. This is a consequence of a small decrease of the critical surface mass density for lensing, combined with the very steep cluster mass function at the high-mass end plus a modest contribution from secondary lens planes. Our results are consistent with those of Bartelmann et al. if we - as they did - restrict all sources to be at z(s) = 1. If we allow sources extending to or beyond z(s) greater than or equal to 1.5, the apparent discrepancy vanishes: the frequency of arcs increases by about a factor of 10 as compared to previous estimates, and results in roughly one arc per 20 deg(2) over the sky, in good agreement with the observed frequency of arcs Y1 - 2004 SN - 0004-637X ER - TY - JOUR A1 - Wambsganß, Joachim A1 - Cen, Renyue A1 - Xu, Guohong A1 - Ostriker, Jeremiah P. T1 - Effects of Weak Gravitational Lensing from Large-Scale Structure of the Determination of Q 0 N2 - Weak gravitational lensing by large-scale structure affects the determination of the cosmological deceleration parameter q0. We find that the lensing induced dispersions on truly standard candles are 0.04 and 0.02 mag at redshift z = 1 and z = 0.5, respectively, in a COBE-normalized cold dark matter universe with Omega 0 = 0.40, Lamda 0 = 0.6, H = 65 km s-1 Mpc-1, and sigma 8 = 0.79. It is shown that one would observe q0 = -0.395^{+0.125}_{-0.095} and q0 = - 0.398^{+0.048}_{-0.077} (the error bars are 2 sigma limits) with standard candles with zero intrinsic dispersion at redshift z = 1 and z = 0.5, respectively, compared to the truth of q0 = -0.400. A standard COBE normalized Omega 0 = 1 CDM model would produce three times as much variance and a mixed (hot and cold) dark matter model would lead to an intermediate result. One unique signature of this dispersion effect is its non-Gaussianity. Although the lensing induced dispersion at lower redshift is still significantly smaller than the currently best observed (total) dispersion of 0.12 mag in a sample of type Ia supernovae, selected with the multicolor light curve shape method, it becomes significant at higher redshift. We show that there is an optimal redshift, in the range z ~ 0.5--2.0 depending on the amplitude of the intrinsic dispersion of the standard candles, at which q0 can be most accurately determined. Y1 - 1997 ER -