TY - JOUR A1 - DeFelipe, Irene A1 - Alcalde, Juan A1 - Baykiev, Eldar A1 - Bernal, Isabel A1 - Boonma, Kittiphon A1 - Carbonell, Ramon A1 - Flude, Stephanie A1 - Folch, Arnau A1 - Fullea, Javier A1 - García-Castellanos, Daniel A1 - Geyer, Adelina A1 - Giralt, Santiago A1 - Hernández, Armand A1 - Jiménez-Munt, Ivone A1 - Kumar, Ajay A1 - Llorens, Maria-Gema A1 - Martí, Joan A1 - Molina, Cecilia A1 - Olivar-Castaño, Andrés A1 - Parnell, Andrew A1 - Schimmel, Martin A1 - Torné, Montserrat A1 - Ventosa, Sergi T1 - Towards a digital twin of the Earth system: Geo-Soft-CoRe, a geoscientific software & code repository JF - Frontiers in earth science N2 - The immense advances in computer power achieved in the last decades have had a significant impact in Earth science, providing valuable research outputs that allow the simulation of complex natural processes and systems, and generating improved forecasts. The development and implementation of innovative geoscientific software is currently evolving towards a sustainable and efficient development by integrating models of different aspects of the Earth system. This will set the foundation for a future digital twin of the Earth. The codification and update of this software require great effort from research groups and therefore, it needs to be preserved for its reuse by future generations of geoscientists. Here, we report on Geo-Soft-CoRe, a Geoscientific Software & Code Repository, hosted at the archive DIGITAL.CSIC. This is an open source, multidisciplinary and multiscale collection of software and code developed to analyze different aspects of the Earth system, encompassing tools to: 1) analyze climate variability; 2) assess hazards, and 3) characterize the structure and dynamics of the solid Earth. Due to the broad range of applications of these software packages, this collection is useful not only for basic research in Earth science, but also for applied research and educational purposes, reducing the gap between the geosciences and the society. By providing each software and code with a permanent identifier (DOI), we ensure its self-sustainability and accomplish the FAIR (Findable, Accessible, Interoperable and Reusable) principles. Therefore, we aim for a more transparent science, transferring knowledge in an easier way to the geoscience community, and encouraging an integrated use of computational infrastructure. KW - digital twin KW - software KW - code KW - global change KW - hazards KW - solid earth Y1 - 2022 U6 - https://doi.org/10.3389/feart.2022.828005 SN - 2296-6463 VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Cabieces, Roberto A1 - Olivar‐Castaño, Andrés A1 - Junqueira, Thiago C. A1 - Relinque, Jesús A1 - Fernandez-Prieto, Luis M. A1 - Vackár, Jiří A1 - Rösler, Boris A1 - Barco, Jaime A1 - Pazos, Antonio A1 - García‐Martínez, Luz T1 - Integrated Seismic Program (ISP): A new Python GUI-based software for earthquake seismology and seismic signal processing JF - Seismological research letters N2 - Integrated Seismic Program (ISP) is a graphical user interface designed to facilitate and provide a user-friendly framework for performing diverse common and advanced tasks in seismological research. ISP is composed of five main modules for earthquake location, time-frequency analysis and advanced signal processing, implementation of array techniques to estimate the slowness vector, seismic moment tensor inversion, and receiver function computation and analysis. In addition, several support tools are available, allowing the user to create an event database, download data from International Federation of Digital Seismograph Networks services, inspect the background noise, and compute synthetic seismograms. ISP is written in Python3, supported by several open-source and/or publicly available tools. Its modular design allows for new features to be added in a collaborative development environment. Y1 - 2022 U6 - https://doi.org/10.1785/0220210205 SN - 0895-0695 SN - 1938-2057 VL - 93 IS - 3 SP - 1895 EP - 1908 PB - Seismological Society of America CY - Albany ER -