TY - JOUR A1 - Hoff, Ulrike A1 - Biskaborn, Boris A1 - Dirksen, Veronika G. A1 - Dirksen, Oleg A1 - Kuhn, Gerhard A1 - Meyer, Hanno A1 - Nazarova, Larisa B. A1 - Roth, Alexandra A1 - Diekmann, Bernhard T1 - Holocene environment of Central Kamchatka, Russia: Implications from a multi-proxy record of Two-Yurts Lake JF - Global and planetary change N2 - Within the scope of Russian German palaeoenvironmental research, Two-Yurts Lake (TYL, Dvuh-Yurtochnoe in Russian) was chosen as the main scientific target area to decipher Holocene climate variability on Kamchatka. The 5 x 2 km large and 26 m deep lake is of proglacial origin and situated on the eastern flank of Sredinny Ridge at the northwestern end of the Central Kamchatka Valley, outside the direct influence of active volcanism. Here, we present results of a multi-proxy study on sediment cores, spanning about the last 7000 years. The general tenor of the TYL record is an increase in continentality and winter snow cover in conjunction with a decrease in temperature, humidity, and biological productivity after 5000-4500 cal yrs BP, inferred from pollen and diatom data and the isotopic composition of organic carbon. The TYL proxy data also show that the late Holocene was punctuated by two colder spells, roughly between 4500 and 3500 cal yrs BP and between 1000 and 200 cal yrs BP, as local expressions of the Neoglacial and Little Ice Age, respectively. These environmental changes can be regarded as direct and indirect responses to climate change, as also demonstrated by other records in the regional terrestrial and marine realm. Long-term climate deterioration was driven by decreasing insolation, while the short-term climate excursions are best explained by local climatic processes. The latter affect the configuration of atmospheric pressure systems that control the sources as well as the temperature and moisture of air masses reaching Kamchatka. (C) 2015 Elsevier B.V. All rights reserved. KW - Kamchatka KW - North Pacific KW - Holocene Climate KW - Palaeolimnology KW - Diatoms KW - Pollen Y1 - 2015 U6 - https://doi.org/10.1016/j.gloplacha.2015.07.011 SN - 0921-8181 SN - 1872-6364 VL - 134 SP - 101 EP - 117 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Nazarova, Larisa B. A1 - de Hoog, Verena A1 - Hoff, Ulrike A1 - Dirksen, Oleg A1 - Diekmann, Bernhard T1 - Late Holocene climate and environmental changes in Kamchatka inferred from the subfossil chironomid record JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - This study presents a reconstruction of the Late Holocene climate in Kamchatka based on chironomid remains from a 332 cm long composite sediment core recovered from Dvuyurtochnoe Lake (Two-Yurts Lake, TYL) in central Kamchatka. The oldest recovered sediments date to about 4500 cal years BP. Chironomid head capsules from TYL reflect a rich and diverse fauna. An unknown morphotype of Tanytarsini, Tanytarsus type klein, was found in the lake sediments. Our analysis reveals four chironomid assemblage zones reflecting four different climatic periods in the Late Holocene. Between 4500 and 4000 cal years BP, the chironomid composition indicates a high lake level, well-oxygenated lake water conditions and close to modern temperatures (similar to 13 degrees C). From 4000 to 1000 cal years BP, two consecutive warm intervals were recorded, with the highest reconstructed temperature reaching 16.8 degrees C between 3700 and 2800 cal years BP. Cooling trend, started around 1100 cal years BP led to low temperatures during the last stage of the Holocene. Comparison with other regional studies has shown that termination of cooling at the beginning of late Holocene is relatively synchronous in central Kamchatka, South Kurile, Bering and Japanese Islands and take place around 3700 cal years BP. From ca 3700 cal years BP to the last millennium, a newly strengthened climate continentality accompanied by general warming trend with minor cool excursions led to apparent spatial heterogeneity of climatic patterns in the region. Some timing differences in climatic changes reconstructed from chironomid record of TYL sediments and late Holocene events reconstructed from other sites and other proxies might be linked to differences in local forcing mechanisms or caused by the different degree of dating precision, the different temporal resolution, and the different sensitive responses of climate proxies to the climate variations. Further high-resolution stratigraphic studies in this region are needed to understand the spatially complex pattern of climate change in Holocene in Kamchatka and the surrounding region. KW - Kamchatka KW - Holocene KW - Chironomids KW - Palaeoclimate KW - Temperature Y1 - 2013 U6 - https://doi.org/10.1016/j.quascirev.2013.01.018 SN - 0277-3791 VL - 67 IS - 9 SP - 81 EP - 92 PB - Elsevier CY - Oxford ER -