TY - JOUR A1 - Wirsching, Jan A1 - Grassmann, Sophie A1 - Eichelmann, Fabian A1 - Harms, Laura Malin A1 - Schenk, Matthew A1 - Barth, Eva A1 - Berndzen, Alide A1 - Olalekan, Moses A1 - Sarmini, Leen A1 - Zuberer, Hedwig A1 - Aleksandrova, Krasimira T1 - Development and reliability assessment of a new quality appraisal tool for cross-sectional studies using biomarker data (BIOCROSS) JF - BMC Medical Research Methodology N2 - Background Biomarker-based analyses are commonly reported in observational epidemiological studies; however currently there are no specific study quality assessment tools to assist evaluation of conducted research. Accounting for study design and biomarker measurement would be important for deriving valid conclusions when conducting systematic data evaluation. Methods We developed a study quality assessment tool designed specifically to assess biomarker-based cross-sectional studies (BIOCROSS) and evaluated its inter-rater reliability. The tool includes 10-items covering 5 domains: ‘Study rational’, ‘Design/Methods’, ‘Data analysis’, ‘Data interpretation’ and ‘Biomarker measurement’, aiming to assess different quality features of biomarker cross-sectional studies. To evaluate the inter-rater reliability, 30 studies were distributed among 5 raters and intraclass correlation coefficients (ICC-s) were derived from respective ratings. Results The estimated overall ICC between the 5 raters was 0.57 (95% Confidence Interval (CI): 0.38–0.74) indicating a good inter-rater reliability. The ICC-s ranged from 0.11 (95% CI: 0.01–0.27) for the domain ‘Study rational’ to 0.56 (95% CI: 0.40–0.72) for the domain ‘Data interpretation’. Conclusion BIOCROSS is a new study quality assessment tool suitable for evaluation of reporting quality from cross-sectional epidemiological studies employing biomarker data. The tool proved to be reliable for use by biomedical scientists with diverse backgrounds and could facilitate comprehensive review of biomarker studies in human research. KW - BIOCROSS KW - Quality appraisal KW - Evaluation tool KW - Cross-sectional studies Y1 - 2018 U6 - https://doi.org/10.1186/s12874-018-0583-x SN - 1471-2288 VL - 18 PB - BMC CY - London ER - TY - JOUR A1 - Ogunkola, Moses Olalekan A1 - Guiraudie-Capraz, Gaelle A1 - Féron, François A1 - Leimkühler, Silke T1 - The Human Mercaptopyruvate Sulfurtransferase TUM1 Is Involved in Moco Biosynthesis, Cytosolic tRNA Thiolation and Cellular Bioenergetics in Human Embryonic Kidney Cells JF - Biomolecules N2 - Sulfur is an important element that is incorporated into many biomolecules in humans. The incorporation and transfer of sulfur into biomolecules is, however, facilitated by a series of different sulfurtransferases. Among these sulfurtransferases is the human mercaptopyruvate sulfurtransferase (MPST) also designated as tRNA thiouridine modification protein (TUM1). The role of the human TUM1 protein has been suggested in a wide range of physiological processes in the cell among which are but not limited to involvement in Molybdenum cofactor (Moco) biosynthesis, cytosolic tRNA thiolation and generation of H2S as signaling molecule both in mitochondria and the cytosol. Previous interaction studies showed that TUM1 interacts with the L-cysteine desulfurase NFS1 and the Molybdenum cofactor biosynthesis protein 3 (MOCS3). Here, we show the roles of TUM1 in human cells using CRISPR/Cas9 genetically modified Human Embryonic Kidney cells. Here, we show that TUM1 is involved in the sulfur transfer for Molybdenum cofactor synthesis and tRNA thiomodification by spectrophotometric measurement of the activity of sulfite oxidase and liquid chromatography quantification of the level of sulfur-modified tRNA. Further, we show that TUM1 has a role in hydrogen sulfide production and cellular bioenergetics. KW - Moco biosynthesis KW - sulfite oxidase KW - cytosolic tRNA thiolation KW - 5-methoxycarbonylmethyl-2-thiouridine KW - H2S biosynthesis KW - cellular bioenergetics Y1 - 2023 U6 - https://doi.org/10.3390/biom13010144 SN - 2218-273X VL - 13 SP - 1 EP - 23 PB - MDPI CY - Basel, Schweiz ET - 1 ER - TY - GEN A1 - Ogunkola, Moses Olalekan A1 - Guiraudie-Capraz, Gaelle A1 - Féron, François A1 - Leimkühler, Silke T1 - The Human Mercaptopyruvate Sulfurtransferase TUM1 Is Involved in Moco Biosynthesis, Cytosolic tRNA Thiolation and Cellular Bioenergetics in Human Embryonic Kidney Cells T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Sulfur is an important element that is incorporated into many biomolecules in humans. The incorporation and transfer of sulfur into biomolecules is, however, facilitated by a series of different sulfurtransferases. Among these sulfurtransferases is the human mercaptopyruvate sulfurtransferase (MPST) also designated as tRNA thiouridine modification protein (TUM1). The role of the human TUM1 protein has been suggested in a wide range of physiological processes in the cell among which are but not limited to involvement in Molybdenum cofactor (Moco) biosynthesis, cytosolic tRNA thiolation and generation of H2S as signaling molecule both in mitochondria and the cytosol. Previous interaction studies showed that TUM1 interacts with the L-cysteine desulfurase NFS1 and the Molybdenum cofactor biosynthesis protein 3 (MOCS3). Here, we show the roles of TUM1 in human cells using CRISPR/Cas9 genetically modified Human Embryonic Kidney cells. Here, we show that TUM1 is involved in the sulfur transfer for Molybdenum cofactor synthesis and tRNA thiomodification by spectrophotometric measurement of the activity of sulfite oxidase and liquid chromatography quantification of the level of sulfur-modified tRNA. Further, we show that TUM1 has a role in hydrogen sulfide production and cellular bioenergetics. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1307 KW - Moco biosynthesis KW - sulfite oxidase KW - cytosolic tRNA thiolation KW - 5-methoxycarbonylmethyl-2-thiouridine KW - H2S biosynthesis KW - cellular bioenergetics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-579580 SN - 1866-8372 IS - 1307 ER -