TY - JOUR A1 - Beyvers, Stephanie A1 - Ohtsuki, Y A1 - Saalfrank, Peter T1 - Optimal control in a dissipative system : vibrational excitation of CO/Cu(100) by IR pulses N2 - The question as to whether state-selective population of molecular vibrational levels by shaped infrared laser pulses is possible in a condensed phase environment is of central importance for such diverse fields as time-resolved spectroscopy, quantum computing, or "vibrationally mediated chemistry." This question is addressed here for a model system, representing carbon monoxide adsorbed on a Cu(100) surface. Three of the six vibrational modes are considered explicitly, namely, the CO stretch vibration, the CO-surface vibration, and a frustrated translation. Optimized infrared pulses for state-selective excitation of "bright" and "dark" vibrational levels are designed by optimal control theory in the framework of a Markovian open-system density matrix approach, with energy flow to substrate electrons and phonons, phase relaxation, and finite temperature accounted for. The pulses are analyzed by their Husimi "quasiprobability" distribution in time-energy space. Y1 - 2006 UR - http://jcp.aip.org/ U6 - https://doi.org/10.1063/1.2206593 SN - 0021-9606 ER -