TY - JOUR A1 - Nitezki, Tina A1 - Schulz, Nadja A1 - Krämer, Stephanie T1 - Color matters BT - They would choose if they could (see)! JF - Laboratory animals : the international journal of laboratory animal science and welfare N2 - Concerning standardization of laboratory animal husbandry, only exiguous changes of habitat can potentially influence animal physiology or results of behavioral tests. Routinely, mice chow is dyed when different types of diets are dispensed. Given the fact that the dye itself has no effects on food odor or flavor, we wanted to test the hypothesis that the color of chow has an impact on food uptake in mice. Twelve-week-old male mice of different strains (C57BL/6J, DBA/2J, C3H/HeJ, BALB/cJ; n = 12/strain) were single-housed in PhenoMaster (R) cages. After acclimatization standard mice chow in different colors was administered. Food intake was monitored as a two-alternative choice test of different color combinations. All animals had an average food intake of 3 g/d and no preferences were observed when a combination of identically colored food was offered. Preference tests yielded significant aversion to blue food and significant attraction to yellow and green food in C57BL/6 and DBA/2J mice. In C3H/HeJ and BALB/cJ mice no color-related pattern occurred. Selected mice strains have known differences concerning functionality of their visual sense. C57BL/6 and DBA/2 mice are considered to be normal sighted at testing age, BALB/c is representative for albino strains and C3H mice carry mutations resulting in retinal alterations. Results suggesting that normal-sighted mice would be selective concerning food color when given the choice. Nevertheless, this does not influence overall quantity of food intake when animals were provided solely with food colored with a single dye. Moreover, visually impaired mice showed no color-related food preferences. N2 - Concernant la normalisation des élevages d’animaux de laboratoire, seuls des changements mineurs de leur habitat peuvent potentiellement influencer la physiologie des animaux ou les résultats des tests comportementaux. Habituellement, la nourriture des souris show est colorée en fonction des différents types de régimes administrés. Étant donné que la couleur n’a aucun effet sur l’odeur ou le goût des aliments, nous avons souhaité vérifier l’hypothèse selon laquelle la couleur des aliments a un impact sur la quantité consommée par les souris. Des souris mâles âgés de 12 semaines issus de différentes souches (C57BL/6J, DBA/2J, C3H/HeJ, BALB/cJ; n = 12/souche) ont été hébergés individuellement dans des cages PhenoMaster®. Après une phase d’acclimatation, des aliments normaux de couleurs différentes ont été administrés. La consommation alimentaire a été mesurée dans le cadre d’un test permettant aux souris de choisir entre deux combinaisons de couleurs différentes. Tous les animaux ont consommé en moyenne 3 g de nourriture par jour et aucune préférence n’a été remarquée lorsqu’une combinaison d’aliments de couleur identique était offerte. Les tests de préférence ont révélé une forte aversion aux aliments de couleur bleue et une attirance importante envers les aliments de couleurs jaune et verte chez les souris C57BL/6 et DBA/2J. Chez les souris C3H/HeJ et BALB/cJ, aucune préférence basée sur les couleurs n’a été observée. Les lignées de souris sélectionnées présentent des différences connues en ce qui concerne la fonctionnalité de leur sens visuel. Il est considéré que les souris C57BL/6 et DBA/2 possèdent une vue normale au moment du test. La lignée BALB/c représente les souches de souris albinos et les souris C3H sont porteuses de mutations entraînant des modifications de la rétine. Les résultats suggèrent que les souris possédant une vue normale sont sélectives en ce qui concerne la couleur des aliments lorsqu’on leur donne le choix. De manière générale, ceci n’influence toutefois pas la quantité de nourriture consommée lorsque les animaux reçoivent uniquement des aliments ne présentant qu’une seule couleur. Par ailleurs, les souris malvoyantes n’ont affiché aucune préférence alimentaire associée aux couleurs. N2 - Bei der Standardisierung der Labortierhaltung können schon geringfügige Veränderungen des Habitats die Physiologie des Tieres oder die Ergebnisse von Verhaltenstests beeinflussen. Routinemäßig wird das Futter von Mäusen gefärbt, wenn verschiedene Arten von Diäten verabreicht werden. Angesichts der Tatsache, dass der Farbstoff selbst keine Auswirkungen auf den Lebensmittelgeruch oder -geschmack hat, wollten wir die Hypothese testen, dass die Futterfarbe einen Einfluss auf die Nahrungsaufnahme bei Mäusen hat. 12 Wochen alte männliche Mäuse verschiedener Stämme (C57BL/6J, DBA/2J, C3H/HeJ, BALB/cJ; n = 12/Stamm) wurden einzeln in PhenoMaster® Käfigen untergebracht. Nach der Akklimatisierung wurde Standard-Mäusefutter in verschiedenen Farben verabreicht. Die Nahrungsaufnahme wurde als ein Zwei-Alternativen-Wahltest verschiedener Farbkombinationen überwacht. Alle Tiere nahmen durchschnittlich 3 g/Tag Nahrung auf und es wurden keine Präferenzen beobachtet, wenn eine Kombination von gleichfarbigen Futtermitteln angeboten wurde. Präferenztests ergaben eine signifikante Abneigung gegen blaues Futter und eine signifikante Vorliebe für gelbes und grünes Futter bei C57BL/6- und DBA/2J-Mäusen. Bei C3H/HeJ- und BALB/cJ-Mäusen waren keine farbbezogenen Muster erkennbar. Ausgewählte Stämme von Mäusen weisen bekanntermaßen Unterschiede in der Funktionalität ihres Sehsinns auf. C57BL/6- und DBA/2-Mäuse gelten im Testalter als normalsichtig, BALB/c sind repräsentativ für Albino-Stämme und C3H-Mäuse sind von Mutationen betroffen, die zu Netzhautveränderungen führen. Die Ergebnisse legen nahe, dass normalsichtige Mäuse selektiv in Bezug auf die Futterfarbe sein dürften, sofern sie die Wahl haben. Dies hat jedoch keinen Einfluss auf die Gesamtmenge der Nahrungsaufnahme, wenn die Tiere ausschließlich mit durch einen einzigen Farbstoff gefärbtem Futter versorgt wurden. Außerdem zeigten sehbehinderte Mäuse keine farbbezogenen Futtervorlieben. KW - refinement KW - color vision KW - food choice KW - color preference KW - eating Y1 - 2018 U6 - https://doi.org/10.1177/0023677218766370 SN - 0023-6772 SN - 1758-1117 VL - 52 IS - 6 SP - 611 EP - 620 PB - Sage Publ. CY - Thousand Oaks ER - TY - JOUR A1 - Hornung, Jessica A1 - Nitezki, Tina A1 - Kraemer, Stephanie T1 - Zieht die Schubladen auf! Ein Appell zur Veröffentlichung von Negativ-Ergebnissen in der tierbasierten Forschung T1 - Pull the drawers open! Call-up to come out with negative results in animal-based research JF - Berliner und Münchener Tierärztliche Wochenschrift N2 - In der Humanmedizin stellt die sogenannte evidenzbasierte Medizin nach Einführung des Begriffs durch D.L. Sackett (Sackett et al. 1996) und der Gründung des Cochrane Instituts (1972) einen wichtigen Standard in der Aufbereitung und dem Transfer von Ergebnissen aus klinischen Studien in den ärztlichen Alltag dar. Ziel ist es, die Vermittlung von Erkenntnissen aus der Wissenschaft für die praktizierenden Ärzte zu erleichtern. Dabei werden Studienergebnisse in Abhängigkeit von der jeweiligen Fragestellung mittels systematischer Literaturrecherche zusammengetragen und hinsichtlich ihrer Evidenz bewertet, um so dem Arzt ein Instrument an die Hand zu geben, mit dem die gewonnenen Erkenntnisse im Hinblick auf eine konkrete klinische Situation abgewogen und angewendet werden können. In den letzten Jahren wurde allerdings vermehrt Kritik laut, dass der Ausgang vieler klinischer Studien in den Übersichtsarbeiten zu positiv dargestellt werde. Ursächlich hierfür ist der Aspekt des Publikationsbias, also die Beobachtung, dass Autoren wissenschaftliche Ergebnisse mit positivem Ausgang bevorzugt publizieren. Überträgt man diesen Sachverhalt auf die präklinische Forschung, die in weiten Teilen auf der Durchführung tierexperimenteller Untersuchungen beruht, so widerspräche das Zurückhalten negativer Ergebnisse in fataler Weise dem 3R-Konzept von Russel und Burch, da dadurch die Gefahr besteht, dass Forschungsvorhaben wiederholt durchgeführt werden. N2 - In human medicine so-called evidence-based medicine represents an important standard to present results and transfer data out of clinical trials into routine medical care, since it was established by D.L. Sackett (Sackett et al. 1996) and the Cochrane Institute was founded (1972). The overall goal is to facilitate transmission of scientific findings to practicing physicians. Depending on respective research questions, study findings are collected via systematical literature review, followed by regarding its evidence. Thus, the physician will be given an instrument, with which he can asses and apply obtained knowledge in view of specific clinical circumstances. In recent years, however, criticism increased since the outcome of many clinical trials was presented too positive in its review. Publication bias is supposed to be one of the main reasons. This may be explained by the observation that authors prefer publishing scientific findings with significant positive results/ output. Transferring these facts to preclinical research, based to a large extend on animal experimental investigations, withholding of negative results would imply fatal contradiction to the 3R-principles of Russel and Burch (Russel and Burch 1959). KW - publication bias KW - evidence-based medicine KW - 3R-principles KW - Publikationsbias KW - evidenzbasierte Medizin KW - 3R-Prinzip Y1 - 2018 U6 - https://doi.org/10.2376/0005-9366-17093 SN - 0005-9366 SN - 1439-0299 VL - 131 IS - 7-8 SP - 279 EP - 283 PB - Schlütersche Verlagsgesellschaft mbH & Co. KG. CY - Hannover ER - TY - JOUR A1 - Nitezki, Tina A1 - Kleuser, Burkhard A1 - Krämer, Stephanie T1 - Fatal gastric distension in a gold thioglucose mouse model of obesity JF - Laboratory Animals N2 - This case report addresses the problem of underreporting negative results and adverse side effects in animal testing. We present our findings regarding a hyperphagic mouse model associated with unforeseen high mortality. The results outline the necessity of reporting detailed information in the literature to avoid duplication. Obese mouse models are essential in the study of obesity, metabolic syndrome and diabetes mellitus. An experimental model of obesity can be induced by the administration of gold thioglucose (GTG). After transcending the blood-brain barrier, the GTG molecule interacts with regions of the ventromedial hypothalamus, thereby primarily targeting glucose-sensitive neurons. When these neurons are impaired, mice become insensitive to the satiety effects of glucose and develop hyperphagia. In a pilot study for optimising dosage and body weight development, C57BL/6 mice were treated with GTG (0.5 mg/g body weight) or saline, respectively. Animals were provided a physiological amount of standard diet (5 g per animal) for the first 24 hours after treatment to prevent gastric dilatation. Within 24 hours after GTG injection, all GTG-treated animals died of gastric overload and subsequent circulatory shock. Animals developed severe attacks of hyperphagia, and as the amount of provided chow was restricted, mice exhibited unforeseen pica and ingested bedding material. These observations strongly suggest that restricted feeding is contraindicated concerning GTG application. Presumably, the impulse of excessive food intake was a strong driving force. Therefore, the actual degree of suffering in the GTG-induced model of hyperphagia should be revised from moderate to severe. KW - appetite KW - distress KW - refinement KW - mortality Y1 - 2018 U6 - https://doi.org/10.1177/0023677218803384 SN - 0023-6772 SN - 1758-1117 VL - 53 IS - 1 SP - 89 EP - 94 PB - Sage Publ. CY - Thousand Oaks ER - TY - THES A1 - Nitezki, Tina T1 - Charakterisierung von Stereotypien bei der FVB/NJ-Maus hinsichtlich metabolischer und immunologischer Aspekte auf die Stoffwechselleistung T1 - Characterization of stereotypies in FVB/NJ mice and their impact on metabolism and immune system N2 - Im Sinne des Refinements von Tierversuchen sollen alle Bedingungen während der Zucht, der Haltung und des Transports von zu Versuchszwecken gehaltenen Tieren und alle Methoden während des Versuchs so verbessert werden, dass die verwendeten Tiere ein minimales Maß an potentiellem Distress, Schmerzen oder Leiden erfahren. Zudem soll ihr Wohlbefinden durch die Möglichkeit des Auslebens speziesspezifischer Verhaltensweisen und die Anwendung tierschonender Verfahren maximal gefördert werden. Zur Etablierung von Grundsätzen des Refinements sind grundlegende Kenntnisse über die physiologischen Bedürfnisse und Verhaltensansprüche der jeweiligen Spezies unabdingbar. Die Experimentatoren sollten das Normalverhalten der Tiere kennen, um potentielle Verhaltensabweichungen, wie Stereotypien, zu verstehen und interpretieren zu können. Standardisierte Haltungsbedingungen von zu Versuchszwecken gehaltenen Mäusen weichen in diversen Aspekten von der natürlichen Umgebung ab und erfordern eine gewisse Adaptation. Ist ein Tier über einen längeren Zeitraum unfähig, sich an die gegebenen Umstände anzupassen, können abnormale Verhaltensweisen, wie Stereotypien auftreten. Stereotypien werden definiert als Abweichungen vom Normalverhalten, die repetitiv und ohne Abweichungen im Ablauf ausgeführt werden, scheinbar keiner Funktion dienen und der konkreten Umweltsituation nicht immer entsprechen. Bisher war unklar, in welchem Ausmaß stereotypes Verhalten den metabolischen Phänotyp eines Individuums beeinflusst. Ziel dieser Arbeit war es daher, das stereotype Verhalten der FVB/NJ-Maus erstmals detailliert zu charakterisieren, systematisch zusammenzutragen, welche metabolischen Konsequenzen dieses Verhalten bedingt und wie sich diese auf das Wohlbefinden der Tiere und die Verwendung stereotyper Tiere in Studien mit tierexperimentellem Schwerpunkt auswirken. Der Versuch begann mit der Charakterisierung der mütterlichen Fürsorge in der Parentalgeneration. Insgesamt wurden 35 Jungtiere der F1-Generation vom Absatz an, über einen Zeitraum von 11 Wochen einzeln gehalten, kontinuierlich beobachtet, bis zum Versuchsende wöchentlich Kotproben gesammelt und das Körpergewicht bestimmt. Zusätzlich erfolgten begleitende Untersuchungen wie Verhaltenstests und die Erfassung der physischen Aktivität und metabolischer Parameter. Anschließend wurden u.a. die zerebralen Serotonin- und Dopamingehalte, fäkale Glucocorticoidlevels, hepatisches Glykogen und muskuläre Glykogen- und Triglyceridlevels bestimmt. Nahezu unabhängig von der mütterlichen Herkunft entwickelte sich bei mehr als der Hälfte der 35 Jungtiere in der F1-Generation stereotypes Verhalten. Diese Daten deuten darauf hin, dass es keine Anzeichen für das Erlernen oder eine direkte genetische Transmission stereotypen Verhaltens bei der FVB/NJ-Maus gibt. Über den gesamten Beobachtungszeitraum zeichneten sich die stereotypen FVB/NJ-Mäuse durch ein eingeschränktes Verhaltensrepertoire aus. Zu Gunsten der erhöhten Aktivität und des Ausübens stereotypen Verhaltens lebten sie insgesamt weniger andere Verhaltensweisen (Klettern, Graben, Nagen) aus. Darüber hinaus waren Stereotypien sowohl im 24-Stunden Open Field Test als auch in der Messeinrichtung der indirekten Tierkalorimetrie mit einer erhöhten Aktivität und Motilität assoziiert, während die circadiane Rhythmik nicht divergierte. Diese erhöhte körperliche Betätigung spiegelte sich in den niedrigeren Körpergewichtsentwicklungen der stereotypen Tiere wieder. Außerdem unterschieden sich die Körperfett- und Körpermuskelanteile. Zusammenfassend lässt sich sagen, dass das Ausüben stereotypen Verhaltens zu Differenzen im metabolischen Phänotyp nicht-stereotyper und stereotyper FVB/NJ-Mäuse führt. Im Sinne der „Guten Wissenschaftlichen Praxis“ sollte das zentrale Ziel jedes Wissenschaftlers sein, aussagekräftige und reproduzierbare Daten hervorzubringen. Jedoch können keine validen Resultate von Tieren erzeugt werden, die in Aspekten variieren, die für den vorgesehenen Zweck der Studie nicht berücksichtigt wurden. Deshalb sollten nicht-stereotype und stereotype Individuen nicht innerhalb einer Versuchsgruppe randomisiert werden. Stereotype Tiere demzufolge von geplanten Studien auszuschließen, würde allerdings dem Gebot des zweiten R’s – der Reduction – widersprechen. Um Refinement zu garantieren, sollte der Fokus auf der maximal erreichbaren Prävention stereotypen Verhaltens liegen. Diverse Studien haben bereits gezeigt, dass die Anreicherung der Haltungsumwelt (environmental enrichment) zu einer Senkung der Prävalenz von Stereotypien bei Mäusen führt, dennoch kommen sie weiterhin vor. Daher sollte environmental enrichment zukünftig weniger ein „Kann“, sondern ein „Muss“ sein – oder vielmehr: der Goldstandard. Zudem würde eine profunde phänotypische Charakterisierung dazu beitragen, Mausstämme zu erkennen, die zu Stereotypien neigen und den für den spezifischen Zweck am besten geeigneten Mausstamm zu identifizieren, bevor ein Experiment geplant wird. N2 - In the sense of refinement animal experimentation, all conditions during breeding, husbandry and transport of animals used for experimental purposes and all methods during the experiment should be improved to reduce the degree of potential distress, pain or suffering. In addition, their well-being should be guaranteed by the possibility of expressing natural and species-specific behavioural patterns and by the application of considerate procedures. In order to establish principles for refinement, basic knowledge about the physiological needs and behavioural requirements of the respective species is indispensable. The experimenters should know the normal behaviour of animals in order to understand and interpret potential behavioural deviations, such as stereotypies. Standardized housing conditions of laboratory mice deviate from the natural environment in various aspects and might require a certain adaptation. Behavioural adaptation allows animals to adjust to environmental changes and leads to species’ characteristic behaviour. If an animal is unable to adapt to environmental conditions, abnormal behaviours like stereotypies might occur. Stereotypies are defined as deviations from normal behaviour, which are executed repetitively and without deviations in the performance, seem to serve no function and do not always correspond to the concrete environmental situation. Since it remains unclear to what extend stereotypic behaviour influences the individual’s metabolic phenotype, this study investigated behaviour of FVB/NJ mice in detail, exemplarily for stereotypy-prone mouse strains, and compiled the impact of behavioural deviations on physical activity, animal metabolism, animal welfare and on results obtained from studies with an animal specific focus. To detect early indicators for the later development of stereotypic behaviour in the F1 generation, this study started with investigating maternal care in the parental generation. Overall, 35 animals of the F1 generation were kept individually from weaning age. For 11 weeks they were observed, faecal samples were obtained and body weight was determined. Additionally, behavioural tests, metabolic parameters and physical activity were investigated. Furthermore, among others, cerebral serotonin and dopamine contents, faecal glucocorticoid levels and hepatic glycogen, muscular triglyceride and glycogen levels were assessed. Almost independently of the mother's origin, more than half of the 35 pups developed stereotypic behavior in the F1 generation. Data suggest that there is obviously no evidence of learning or a direct genetic transmission of stereotypic behavior in the FVB/NJ-mouse. The predominant portion of stereotypic animals performed the stereotypy of back-flipping (backwards jumping), some animals demonstrated stereotypic circuit running (running in circles on the cage bottom) and wire gnawing (persistent gnawing on the cage grid while hanging with the forelimbs on it). Because of the increased activity and the performance of stereotypic behaviour, stereotypic mice displayed a restricted behavioural repertoire (reduced climbing, digging, gnawing). Moreover, stereotypies were associated with increased activity and motility, both in the 24-hours open field test and in the ITK system, while the circadian rhythm did not diverge. This elevated physical activity was reflected in the expected gender-dependent lower body weight development of stereotypic animals. In addition, stereotypic FVB/NJ-mice contained more relative muscle mass and less fat mass compared to non-stereotypic FVB/NJ-mice in experimental weeks 7 and 12. Besides, significant differences in relative organ weights were found. In conclusion, the performance of stereotypic behaviour leads to differences in the metabolic phenotype between non-stereotypic and stereotypic FVB/NJ mice. In the sense of "Good Scientific Practice", the central aim of any scientist should be to generate meaningful and reproducible data. However, no valid results can be generated with data derived from animals which differ in aspects that were not considered for the designated purpose of the study. Therefore, stereotypic and non-stereotypic individuals should not be randomized within one trial group. To generally exclude stereotypic animals from further studies, though, would interfere with the commandment of the second "R" - the reduction. To guarantee a maximum refinement, the focus should be the highest achievable prevention of stereotypies. Multiple studies indicate that environmental enrichment decreases the prevalence of stereotypic behaviour in mice, nevertheless they still occur. Thus, environmental enrichment of animal housing should not be a "can" but a "must", or rather the “golden standard”. Moreover, a profound phenotypic characterization would help to identify a stereotypy-prone mouse strain and to determine the mouse strain most suitable for the specific purpose before planning an experiment. KW - Stereotypien KW - Verhalten KW - FVB/NJ Maus KW - Versuchstierkunde KW - stereotypy KW - behaviour KW - FVB/NJ mouse KW - laboratory animal sciences Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-402265 ER -