TY - JOUR A1 - Goerg, Christoph A1 - Spangenberg, Joachim H. A1 - Tekken, Vera A1 - Burkhard, Benjamin A1 - Da Thanh Truong, A1 - Escalada, Monina A1 - Heong, Kong Luen A1 - Arida, Gertrudo A1 - Marquez, Leonardo V. A1 - Bustamante, Jesus Victor A1 - Ho Van Chien, A1 - Klotzbuecher, Thimo A1 - Marxen, Anika A1 - Nguyen Hung Man, A1 - Nguyen Van Sinh, A1 - Villareal, Sylvia (Bong) A1 - Settele, Josef T1 - Engaging local knowledge in biodiversity research: experiences from large inter- and transdisciplinary projects JF - Interdisciplinary science reviews N2 - The management of biodiversity represents a research topic that needs to involve not only several (sub-) disciplines from the natural sciences but, in particular, also the social sciences and humanities. Furthermore, over the last couple of years, the need for the integration of other kinds of knowledge (experience based or indigenous knowledge) is increasingly acknowledged. For instance, the incorporation of such knowledge is indispensable for place-based approaches to sustainable land management, which require that the specific ecological and social context is addressed. However, desirable as it may be, such an engagement of the holders of tacit knowledge is not easy to achieve. It demands reconciling well-established scientific procedural standards with the implicit or explicit criteria of relevance that apply in civil society a process that typically causes severe tensions and comes up against both habitual as well as institutional constraints. The difficulty of managing such tensions is amplified particularly in large integrated projects and represents a major challenge to project management. At the Helmholtz Centre for Environmental Research - UFZ, several integrated research projects have been conducted over the past years in which experience has been gained with these specific challenges. This paper presents some of the lessons learned from large integrated projects, with an emphasis on project design and management structure. At the centre of the present contribution are experiences gained in the coordination and management of LEGATO (LEGATO stands for Land-use intensity and Ecological EnGineering - Assessment Tools for risks and Opportunities in irrigated rice based production systems, see www.legato-project.net), an ongoing, large-scale, inter- and transdisciplinary research project dealing with the management of irrigated rice landscapes in Southeast Asia. In this project, local expertise on traditional production systems is absolutely crucial but needs to be integrated with natural and social science research to identify future-proof land management systems. KW - inter- and transdisciplinarity KW - biodiversity and ecosystem services KW - stakeholder participation KW - knowledge integration KW - project coordination Y1 - 2014 U6 - https://doi.org/10.1179/0308018814Z.00000000095 SN - 0308-0188 SN - 1743-2790 VL - 39 IS - 4 SP - 323 EP - 341 PB - Routledge, Taylor & Francis Group CY - Leeds ER - TY - GEN A1 - Ribeiro Martins, Renata Filipa A1 - Fickel, Jörns A1 - Le, Minh A1 - Nguyen, Thanh van A1 - Nguyen, Ha M. A1 - Timmins, Robert A1 - Gan, Han Ming A1 - Rovie-Ryan, Jeffrine J. A1 - Lenz, Dorina A1 - Förster, Daniel W. A1 - Wilting, Andreas T1 - Phylogeography of red muntjacs reveals three distinct mitochondrial lineages T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background The members of the genus Muntiacus are of particular interest to evolutionary biologists due to their extreme chromosomal rearrangements and the ongoing discussions about the number of living species. Red muntjacs have the largest distribution of all muntjacs and were formerly considered as one species. Karyotype differences led to the provisional split between the Southern Red Muntjac (Muntiacus muntjak) and the Northern Red Muntjac (M. vaginalis), but uncertainties remain as, so far, no phylogenetic study has been conducted. Here, we analysed whole mitochondrial genomes of 59 archival and 16 contemporaneous samples to resolve uncertainties about their taxonomy and used red muntjacs as model for understanding the evolutionary history of other species in Southeast Asia. Results We found three distinct matrilineal groups of red muntjacs: Sri Lankan red muntjacs (including the Western Ghats) diverged first from other muntjacs about 1.5 Mya; later northern red muntjacs (including North India and Indochina) and southern red muntjacs (Sundaland) split around 1.12 Mya. The diversification of red muntjacs into these three main lineages was likely promoted by two Pleistocene barriers: one through the Indian subcontinent and one separating the Indochinese and Sundaic red muntjacs. Interestingly, we found a high level of gene flow within the populations of northern and southern red muntjacs, indicating gene flow between populations in Indochina and dispersal of red muntjacs over the exposed Sunda Shelf during the Last Glacial Maximum. Conclusions Our results provide new insights into the evolution of species in South and Southeast Asia as we found clear genetic differentiation in a widespread and generalist species, corresponding to two known biogeographical barriers: The Isthmus of Kra and the central Indian dry zone. In addition, our molecular data support either the delineation of three monotypic species or three subspecies, but more importantly these data highlight the conservation importance of the Sri Lankan/South Indian red muntjac. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 973 KW - phylogeography KW - archival DNA KW - Muntjac KW - Southeast Asia KW - species complex Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-430780 SN - 1866-8372 IS - 973 ER - TY - JOUR A1 - Martins, Renata F. A1 - Fickel, Jörns A1 - Minh Le, A1 - Thanh Van Nguyen, A1 - Nguyen, Ha M. A1 - Timmins, Robert A1 - Gan, Han Ming A1 - Rovie-Ryan, Jeffrine J. A1 - Lenz, Dorina A1 - Förster, Daniel W. A1 - Wilting, Andreas T1 - Phylogeography of red muntjacs reveals three distinct mitochondrial lineages JF - BMC evolutionary biology N2 - Background: The members of the genus Muntiacus are of particular interest to evolutionary biologists due to their extreme chromosomal rearrangements and the ongoing discussions about the number of living species. Red muntjacs have the largest distribution of all muntjacs and were formerly considered as one species. Karyotype differences led to the provisional split between the Southern Red Muntjac (Muntiacus muntjak) and the Northern Red Muntjac (M. vaginalis), but uncertainties remain as, so far, no phylogenetic study has been conducted. Here, we analysed whole mitochondrial genomes of 59 archival and 16 contemporaneous samples to resolve uncertainties about their taxonomy and used red muntjacs as model for understanding the evolutionary history of other species in Southeast Asia. Results: We found three distinct matrilineal groups of red muntjacs: Sri Lankan red muntjacs (including the Western Ghats) diverged first from other muntjacs about 1.5 Mya; later northern red muntjacs (including North India and Indochina) and southern red muntjacs (Sundaland) split around 1.12 Mya. The diversification of red muntjacs into these three main lineages was likely promoted by two Pleistocene barriers: one through the Indian subcontinent and one separating the Indochinese and Sundaic red muntjacs. Interestingly, we found a high level of gene flow within the populations of northern and southern red muntjacs, indicating gene flow between populations in Indochina and dispersal of red muntjacs over the exposed Sunda Shelf during the Last Glacial Maximum. Conclusions: Our results provide new insights into the evolution of species in South and Southeast Asia as we found clear genetic differentiation in a widespread and generalist species, corresponding to two known biogeographical barriers: The Isthmus of Kra and the central Indian dry zone. In addition, our molecular data support either the delineation of three monotypic species or three subspecies, but more importantly these data highlight the conservation importance of the Sri Lankan/South Indian red muntjac. KW - Phylogeography KW - Archival DNA KW - Muntjac KW - Southeast Asia KW - Species complex Y1 - 2017 U6 - https://doi.org/10.1186/s12862-017-0888-0 SN - 1471-2148 VL - 17 IS - 34 PB - BioMed Central CY - London ER - TY - THES A1 - Nguyen, Van Thanh T1 - Unravelling the mysteries of the Annamites BT - First insights in ecology, distribution, and genetic diversity of Annamite mammals N2 - The Annamites mountain range of Southeast Asia which runs along the border of Viet Nam and Laos is an important biodiversity hotspot with high levels of endemism. However, that biodiversity is threatened by unsustainable hunting, and many protected areas across the region have been emptied of their wildlife. To better protect the unique species in the Annamites, it is crucial to have a better understanding of their ecology and distribution. Additionally, basic genetic information is needed to provide conservation stakeholders with essential information to facilitate conservation breeding and counteract the illegal wildlife trade. To date, this baseline information is lacking for many Annamites species. This thesis aims to assess the effectiveness of using non-invasive collection methods, i.e. camera-trap surveys and leech-derived wildlife host DNA, in order to improve and enhance our understanding of ecology, distribution, and genetic diversity of the Annamites terrestrial mammals. In chapter 1, we analysed data from a systematic landscape camera-trap survey using single-species occupancy models to assess the ecology and distribution of two little-known Annamite endemics, the Annamite dark muntjac (Muntiacus rooseveltorum / truongsonensis) and Annamite striped rabbit (Nesolagus timminsi), in multiple protected areas across the Annamites. This chapter provided the first in-depth information on their ecology, as well as distribution patterns at large spatial scales. Most notably, we found that the Annamite dark muntjac was predominantly found at higher elevations, while responses to elevation varied among study areas for the Annamite striped rabbit. We estimated occupancy probabilities for both endemics by using their responses to environmental and anthropogenic influences and used this information to make recommendations for targeted conservation actions. We discuss how the approach we used for these two Annamites endemics can be expanded for other little-known and threatened species in other tropical regions. As is the case with ecology and distribution, very little is known about the genetic diversity of the Annamite striped rabbit and other mammals of the Annamites. This poor understanding is mainly attributed to the lack of a comprehensive DNA sample collection that covers the species’ entire distribution range, which is believed to be a consequence of the low density of mammals or the remoteness of species’ habitat. In order to overcome the difficulties when trying to collect DNA samples from elusive mammals, we applied invertebrate-derived DNA (iDNA) sampling via hematophagous leeches to indirectly obtain genetic materials of their terrestrial host mammals. In chapter 2, leech-derived DNA was used to study the genetic diversity of the Annamite striped rabbit population. By analysing the DNA extracted from leech samples collected at multiple study areas of the central Annamites, we found a genetic variation with five haplotypes among nine obtained sequences. Despite this diversity, we found no clear phylogeographic pattern among the lagomorph’s populations in central Annamites. The findings have direct conservation implications for the species, as local stakeholders are currently establishing a conservation rescue and breeding facility for Annamite endemic species. Thus our results suggested that Annamite striped rabbits from multiple protected areas in central Annamites can be used as founders for the breeding program. In chapter 3, the genetic material of six mammals, which are frequently found in Indochina's illegal wildlife trade, was extracted from leeches collected at six study sites across the Anamites. Species-specific genetic markers were used to obtain DNA fragments that were analysed together with Genbank reference sequences from other parts of the species’ distribution range. Our results showed that invertebrate-derived DNA can be used to fill the sampling gaps and provide genetic reference data that is needed for conservation breeding programmes or to counteract the illegal wildlife trade. Overal, this dissertation provides the first insights in the ecology, distribution, and genetics of rare and threatened species of the Annamites by utilising camera traps and leech-derived DNA as two non-invasive collection methods. This information is essential for improving conservation efforts of local stakeholders and managers, especially for the Annamite endemics. Results in this dissertation also show the effectiveness of both non-invasive methods for studying terrestrial mammals at a landscape level. By expanding the application of these methods to other protected areas across the Annamites, we will further our understanding of ecology, distribution, and genetics of Annamite endemics. With such landscape-scale surveys, we are able to provide stakeholders with an overview of the current status of wildlife in the Annamites which supports efforts to protect these secretive species from illegal hunting and thus their extinction. KW - Annamites KW - threatened KW - animal KW - camera-trap KW - occupancy Y1 - 2022 ER -