TY - JOUR A1 - Kreuzer, Lucas A1 - Widmann, Tobias A1 - Hohn, Nuri A1 - Wang, Kun A1 - Biessmann, Lorenz A1 - Peis, Leander A1 - Moulin, Jean-Francois A1 - Hildebrand, Viet A1 - Laschewsky, André A1 - Papadakis, Christine M. A1 - Müller-Buschbaum, Peter T1 - Swelling and exchange behavior of poly(sulfobetaine)-based block copolymer thin films JF - Macromolecules : web edition N2 - The humidity-induced swelling and exchange behavior of a block copolymer thin film, which consists of a zwitterionic poly(sulfobetaine) [poly(N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropanesulfonate) (PSPP)] block and a nonionic poly(N-isopropylacrylamide) (PNIPAM) block, are investigated by time-of-flight neutron reflectometry (TOF-NR). We monitor in situ the swelling in the H2O atmosphere, followed by an exchange with D2O. In the reverse experiment, swelling in the D2O atmosphere and the subsequent exchange with H2O are studied. Both, static and kinetic TOF-NR measurements indicate significant differences in the interactions between the PSPP80-b-PNIPAM(130) thin film and H2O or D2O, which we attribute to the different H- and D-bonds between water and the polymer. Changes in the chain conformation and hydrogen bonding are probed with Fourier transform infrared spectroscopy during the kinetics of the swelling and exchange processes, which reveals the key roles of the ionic SO3- group in the PSPP block and of the polar amide groups of both blocks during water uptake and exchange. Y1 - 2019 U6 - https://doi.org/10.1021/acs.macromol.9b00443 SN - 0024-9297 SN - 1520-5835 VL - 52 IS - 9 SP - 3486 EP - 3498 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Lai, Huagui A1 - Luo, Jincheng A1 - Zwirner, Yannick A1 - Olthof, Selina A1 - Wieczorek, Alexander A1 - Ye, Fangyuan A1 - Jeangros, Quentin A1 - Yin, Xinxing A1 - Akhundova, Fatima A1 - Ma, Tianshu A1 - He, Rui A1 - Kothandaraman, Radha K. A1 - Chin, Xinyu A1 - Gilshtein, Evgeniia A1 - Muller, Andre A1 - Wang, Changlei A1 - Thiesbrummel, Jarla A1 - Siol, Sebastian A1 - Prieto, Jose Marquez A1 - Unold, Thomas A1 - Stolterfoht, Martin A1 - Chen, Cong A1 - Tiwari, Ayodhya N. A1 - Zhao, Dewei A1 - Fu, Fan T1 - High-performance flexible all-Perovskite tandem solar cells with reduced V-OC-deficit in wide-bandgap subcell JF - Advanced energy materials N2 - Among various types of perovskite-based tandem solar cells (TSCs), all-perovskite TSCs are of particular attractiveness for building- and vehicle-integrated photovoltaics, or space energy areas as they can be fabricated on flexible and lightweight substrates with a very high power-to-weight ratio. However, the efficiency of flexible all-perovskite tandems is lagging far behind their rigid counterparts primarily due to the challenges in developing efficient wide-bandgap (WBG) perovskite solar cells on the flexible substrates as well as their low open-circuit voltage (V-OC). Here, it is reported that the use of self-assembled monolayers as hole-selective contact effectively suppresses the interfacial recombination and allows the subsequent uniform growth of a 1.77 eV WBG perovskite with superior optoelectronic quality. In addition, a postdeposition treatment with 2-thiopheneethylammonium chloride is employed to further suppress the bulk and interfacial recombination, boosting the V-OC of the WBG top cell to 1.29 V. Based on this, the first proof-of-concept four-terminal all-perovskite flexible TSC with a power conversion efficiency of 22.6% is presented. When integrating into two-terminal flexible tandems, 23.8% flexible all-perovskite TSCs with a superior V-OC of 2.1 V is achieved, which is on par with the V-OC reported on the 28% all-perovskite tandems grown on the rigid substrate. KW - all-perovskite tandems KW - flexible tandem solar cells KW - perovskite KW - V OC-deficit KW - wide-bandgap Y1 - 2022 U6 - https://doi.org/10.1002/aenm.202202438 SN - 1614-6832 SN - 1614-6840 VL - 12 IS - 45 PB - Wiley-VCH CY - Weinheim ER -