TY - JOUR A1 - Müller, Katharina A1 - Foerstendorf, Harald A1 - Steudtner, Robin A1 - Tsushima, Satoru A1 - Kumke, Michael Uwe A1 - Lefèvre, Grégory A1 - Rothe, Jörg A1 - Mason, Harris A1 - Szabó, Zoltán A1 - Yang, Ping A1 - Adam, Christian K. R. A1 - André, Rémi A1 - Brennenstuhl, Katlen A1 - Chiorescu, Ion A1 - Cho, Herman M. A1 - Creff, Gaëlle A1 - Coppin, Frédéric A1 - Dardenne, Kathy A1 - Den Auwer, Christophe A1 - Drobot, Björn A1 - Eidner, Sascha A1 - Hess, Nancy J. A1 - Kaden, Peter A1 - Kremleva, Alena A1 - Kretzschmar, Jerome A1 - Krüger, Sven A1 - Platts, James A. A1 - Panak, Petra A1 - Polly, Robert A1 - Powell, Brian A. A1 - Rabung, Thomas A1 - Redon, Roland A1 - Reiller, Pascal E. A1 - Rösch, Notker A1 - Rossberg, André A1 - Scheinost, Andreas C. A1 - Schimmelpfennig, Bernd A1 - Schreckenbach, Georg A1 - Skerencak-Frech, Andrej A1 - Sladkov, Vladimir A1 - Solari, Pier Lorenzo A1 - Wang, Zheming A1 - Washton, Nancy M. A1 - Zhang, Xiaobin T1 - Interdisciplinary Round-Robin Test on molecular spectroscopy of the U(VI) Acetate System JF - ACS omega / American Chemical Society N2 - A comprehensive molecular analysis of a simple aqueous complexing system. U(VI) acetate. selected to be independently investigated by various spectroscopic (vibrational, luminescence, X-ray absorption, and nuclear magnetic resonance spectroscopy) and quantum chemical methods was achieved by an international round-robin test (RRT). Twenty laboratories from six different countries with a focus on actinide or geochemical research participated and contributed to this scientific endeavor. The outcomes of this RRT were considered on two levels of complexity: first, within each technical discipline, conformities as well as discrepancies of the results and their sources were evaluated. The raw data from the different experimental approaches were found to be generally consistent. In particular, for complex setups such as accelerator-based X-ray absorption spectroscopy, the agreement between the raw data was high. By contrast, luminescence spectroscopic data turned out to be strongly related to the chosen acquisition parameters. Second, the potentials and limitations of coupling various spectroscopic and theoretical approaches for the comprehensive study of actinide molecular complexes were assessed. Previous spectroscopic data from the literature were revised and the benchmark data on the U(VI) acetate system provided an unambiguous molecular interpretation based on the correlation of spectroscopic and theoretical results. The multimethodologic approach and the conclusions drawn address not only important aspects of actinide spectroscopy but particularly general aspects of modern molecular analytical chemistry. Y1 - 2019 U6 - https://doi.org/10.1021/acsomega.9b00164 SN - 2470-1343 VL - 4 IS - 5 SP - 8167 EP - 8177 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Warrington, Nicole A1 - Beaumont, Robin A1 - Horikoshi, Momoko A1 - Day, Felix R. A1 - Helgeland, Øyvind A1 - Laurin, Charles A1 - Bacelis, Jonas A1 - Peng, Shouneng A1 - Hao, Ke A1 - Feenstra, Bjarke A1 - Wood, Andrew R. A1 - Mahajan, Anubha A1 - Tyrrell, Jessica A1 - Robertson, Neil R. A1 - Rayner, N. William A1 - Qiao, Zhen A1 - Moen, Gunn-Helen A1 - Vaudel, Marc A1 - Marsit, Carmen A1 - Chen, Jia A1 - Nodzenski, Michael A1 - Schnurr, Theresia M. A1 - Zafarmand, Mohammad Hadi A1 - Bradfield, Jonathan P. A1 - Grarup, Niels A1 - Kooijman, Marjolein N. A1 - Li-Gao, Ruifang A1 - Geller, Frank A1 - Ahluwalia, Tarunveer Singh A1 - Paternoster, Lavinia A1 - Rueedi, Rico A1 - Huikari, Ville A1 - Hottenga, Jouke-Jan A1 - Lyytikäinen, Leo-Pekka A1 - Cavadino, Alana A1 - Metrustry, Sarah A1 - Cousminer, Diana L. A1 - Wu, Ying A1 - Thiering, Elisabeth Paula A1 - Wang, Carol A. A1 - Have, Christian Theil A1 - Vilor-Tejedor, Natalia A1 - Joshi, Peter K. A1 - Painter, Jodie N. A1 - Ntalla, Ioanna A1 - Myhre, Ronny A1 - Pitkänen, Niina A1 - van Leeuwen, Elisabeth M. A1 - Joro, Raimo A1 - Lagou, Vasiliki A1 - Richmond, Rebecca C. A1 - Espinosa, Ana A1 - Barton, Sheila J. A1 - Inskip, Hazel M. A1 - Holloway, John W. A1 - Santa-Marina, Loreto A1 - Estivill, Xavier A1 - Ang, Wei A1 - Marsh, Julie A. A1 - Reichetzeder, Christoph A1 - Marullo, Letizia A1 - Hocher, Berthold A1 - Lunetta, Kathryn L. A1 - Murabito, Joanne M. A1 - Relton, Caroline L. A1 - Kogevinas, Manolis A1 - Chatzi, Leda A1 - Allard, Catherine A1 - Bouchard, Luigi A1 - Hivert, Marie-France A1 - Zhang, Ge A1 - Muglia, Louis J. A1 - Heikkinen, Jani A1 - Morgen, Camilla S. A1 - van Kampen, Antoine H. C. A1 - van Schaik, Barbera D. C. A1 - Mentch, Frank D. A1 - Langenberg, Claudia A1 - Scott, Robert A. A1 - Zhao, Jing Hua A1 - Hemani, Gibran A1 - Ring, Susan M. A1 - Bennett, Amanda J. A1 - Gaulton, Kyle J. A1 - Fernandez-Tajes, Juan A1 - van Zuydam, Natalie R. A1 - Medina-Gomez, Carolina A1 - de Haan, Hugoline G. A1 - Rosendaal, Frits R. A1 - Kutalik, Zoltán A1 - Marques-Vidal, Pedro A1 - Das, Shikta A1 - Willemsen, Gonneke A1 - Mbarek, Hamdi A1 - Müller-Nurasyid, Martina A1 - Standl, Marie A1 - Appel, Emil V. R. A1 - Fonvig, Cilius Esmann A1 - Trier, Caecilie A1 - van Beijsterveldt, Catharina E. M. A1 - Murcia, Mario A1 - Bustamante, Mariona A1 - Bonàs-Guarch, Sílvia A1 - Hougaard, David M. A1 - Mercader, Josep M. A1 - Linneberg, Allan A1 - Schraut, Katharina E. A1 - Lind, Penelope A. A1 - Medland, Sarah Elizabeth A1 - Shields, Beverley M. A1 - Knight, Bridget A. A1 - Chai, Jin-Fang A1 - Panoutsopoulou, Kalliope A1 - Bartels, Meike A1 - Sánchez, Friman A1 - Stokholm, Jakob A1 - Torrents, David A1 - Vinding, Rebecca K. A1 - Willems, Sara M. A1 - Atalay, Mustafa A1 - Chawes, Bo L. A1 - Kovacs, Peter A1 - Prokopenko, Inga A1 - Tuke, Marcus A. A1 - Yaghootkar, Hanieh A1 - Ruth, Katherine S. A1 - Jones, Samuel E. A1 - Loh, Po-Ru A1 - Murray, Anna A1 - Weedon, Michael N. A1 - Tönjes, Anke A1 - Stumvoll, Michael A1 - Michaelsen, Kim Fleischer A1 - Eloranta, Aino-Maija A1 - Lakka, Timo A. A1 - van Duijn, Cornelia M. A1 - Kiess, Wieland A1 - Koerner, Antje A1 - Niinikoski, Harri A1 - Pahkala, Katja A1 - Raitakari, Olli T. A1 - Jacobsson, Bo A1 - Zeggini, Eleftheria A1 - Dedoussis, George V. A1 - Teo, Yik-Ying A1 - Saw, Seang-Mei A1 - Montgomery, Grant W. A1 - Campbell, Harry A1 - Wilson, James F. A1 - Vrijkotte, Tanja G. M. A1 - Vrijheid, Martine A1 - de Geus, Eco J. C. N. A1 - Hayes, M. Geoffrey A1 - Kadarmideen, Haja N. A1 - Holm, Jens-Christian A1 - Beilin, Lawrence J. A1 - Pennell, Craig E. A1 - Heinrich, Joachim A1 - Adair, Linda S. A1 - Borja, Judith B. A1 - Mohlke, Karen L. A1 - Eriksson, Johan G. A1 - Widen, Elisabeth E. A1 - Hattersley, Andrew T. A1 - Spector, Tim D. A1 - Kaehoenen, Mika A1 - Viikari, Jorma S. A1 - Lehtimaeki, Terho A1 - Boomsma, Dorret I. A1 - Sebert, Sylvain A1 - Vollenweider, Peter A1 - Sorensen, Thorkild I. A. A1 - Bisgaard, Hans A1 - Bonnelykke, Klaus A1 - Murray, Jeffrey C. A1 - Melbye, Mads A1 - Nohr, Ellen A. A1 - Mook-Kanamori, Dennis O. A1 - Rivadeneira, Fernando A1 - Hofman, Albert A1 - Felix, Janine F. A1 - Jaddoe, Vincent W. V. A1 - Hansen, Torben A1 - Pisinger, Charlotta A1 - Vaag, Allan A. A1 - Pedersen, Oluf A1 - Uitterlinden, Andre G. A1 - Jarvelin, Marjo-Riitta A1 - Power, Christine A1 - Hypponen, Elina A1 - Scholtens, Denise M. A1 - Lowe, William L. A1 - Smith, George Davey A1 - Timpson, Nicholas J. A1 - Morris, Andrew P. A1 - Wareham, Nicholas J. A1 - Hakonarson, Hakon A1 - Grant, Struan F. A. A1 - Frayling, Timothy M. A1 - Lawlor, Debbie A. A1 - Njolstad, Pal R. A1 - Johansson, Stefan A1 - Ong, Ken K. A1 - McCarthy, Mark I. A1 - Perry, John R. B. A1 - Evans, David M. A1 - Freathy, Rachel M. T1 - Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors JF - Nature genetics N2 - Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming. Y1 - 2019 SN - 1061-4036 SN - 1546-1718 VL - 51 IS - 5 SP - 804 EP - + PB - Nature Publ. Group CY - New York ER - TY - JOUR A1 - Wang, Weijia A1 - Kaune, Gunar A1 - Perlich, Jan A1 - Paradakis, Christine M. A1 - Bivigou Koumba, Achille Mayelle A1 - Laschewsky, André A1 - Schlage, K. A1 - Röhlsberger, Ralf A1 - Roth, Stephan V. A1 - Cubitt, Robert A1 - Müller-Buschbaum, Peter T1 - Swelling and switching kinetics of gold coated end-capped poly(N-isopropylacrylamide) thin films N2 - Thin thermoresponsive hydrogel films of poly(N-isopropylacrylamide) end-capped with n-butyltrithiocarbonate(nbc- PNIPAM) oil si I icon supports with a gold layer on top, causing an asymmetric confinement, are investigated. For two different gold layer thicknesses (nominally 0.4 and 5 rim), the swelling and switching kinetics are probed with in situ neutron reflectivity. With a temperature jump from 23 to 40 degrees C the film is switched from a swollen into a collapsed state. For the thin gold layer this switching is faster as compared to the thick gold layer. The switching is a two-step process of water release and a subsequent structural relaxation. fit swelling and deswelling cycles, aging of the films is probed. After five cycles, the film exhibits enhanced water storage capacity. Grazing-incidence small-angle X-ray scattering (GISAXS) shows that these gold coated nbc-PNIPAM films do not age with respect to the inner structure but slightly roughen at the gold surface. As revealed by atomic force microscopy, the morphology of the gold layer is changed by the water uptake and release. Y1 - 2010 UR - http://pubs.acs.org/journal/mamobx U6 - https://doi.org/10.1021/Ma902637a SN - 0024-9297 ER - TY - JOUR A1 - Harms, Stephan A1 - Raetzke, Klaus A1 - Faupel, Franz A1 - Egger, Werner A1 - Ravello, Lori Boyd de A1 - Laschewsky, André A1 - Wang, Weinan A1 - Müller-Buschbaum, Peter T1 - Free volume and swelling in thin films of poly(n-isopropylacrylamide) end-capped with n-butyltrithiocarbonate N2 - The free volume in thin films of poly(N-isopropylacrylamid) end-capped with n-butyltrio-carbonate (nbc-PNIPAM) is probed with positron annihilation lifetime spectroscopy (PALS). The PALS measurements are performed as function of energy to obtain depth profiles of the free volume of nbc-PNIPAM films. The range of nbc-PNIPAM films with thicknesses from 40 to 200 nm is focused. With decreasing film thickness the free volume increases in good agreement with an increase in the maximum swelling capability of the nbc-PNIPAM films. Thus in thin hydrogel films the sorption and swelling behavior is governed by free volume. Y1 - 2010 UR - http://www3.interscience.wiley.com/cgi-bin/jhome/10003270 U6 - https://doi.org/10.1002/marc.201000067 SN - 1022-1336 ER - TY - JOUR A1 - Sumpf, Bernd A1 - Maiwald, Martin A1 - Muller, Andre A1 - Ginolas, Arnim A1 - Haeusler, Karl A1 - Erbert, Goetz A1 - Traenkle, Guenther T1 - Reliable operation for 14 500 h of a wavelength-stabilized Diode Laser System on a Microoptical Bench at 671 nm JF - IEEE transactions on components, packaging and manufacturing technology N2 - Reliability tests for wavelength-stabilized compact diode laser systems emitting at 671 nm are presented. The devices were mounted on microoptical benches with the dimensions of 13 mm x 4 mm. Reflecting Bragg gratings were used for wavelength stabilization and emission width narrowing. The reliability tests were performed at 25 degrees C and at an output power up to 10 mW per micrometer stripe width of the gain medium. Reliable operation could be demonstrated over a test time up to 14 500 h at an output power up to 1.0 W. Environmental tests using random vibrations with acceleration up to 29 g were performed without deterioration of the devices. KW - High-power lasers KW - laser resonators KW - Raman spectroscopy KW - reliability KW - semiconductor lasers Y1 - 2012 U6 - https://doi.org/10.1109/TCPMT.2011.2171342 SN - 2156-3950 VL - 2 IS - 1 SP - 116 EP - 121 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Kreuzer, Lucas A1 - Lindenmeir, Christoph A1 - Geiger, Christina A1 - Widmann, Tobias A1 - Hildebrand, Viet A1 - Laschewsky, André A1 - Papadakis, Christine M. A1 - Müller-Buschbaum, Peter T1 - Poly(sulfobetaine) versus poly(N-isopropylmethacrylamide) BT - co-nonsolvency-type behavior of thin films in a water/methanol atmosphere JF - Macromolecules : a publication of the American Chemical Society N2 - The swelling and co-nonsolvency behaviors in pure H2O and in a mixed H2O/CH3OH vapor atmosphere of two different polar, water-soluble polymers in thin film geometry are studied in situ. Films of a zwitterionic poly(sulfobetaine), namely, poly[3-((2-(methacryloyloxy)ethyl)dimethylammonio) propane-1-sulfonate] (PSPE), and a polar nonionic polymer, namely, poly(N-isopropylmethacrylamide) (PNIPMAM), are investigated in real time by spectral reflectance (SR) measurements and Fourier transform infrared (FTIR) spectroscopy. Whereas PSPE is insoluble in methanol, PNIPMAM is soluble but exhibits cononsolvency behavior in water/methanol mixtures. First, the swelling of PSPE and PNIPMAM thin films in H2O vapor is followed. Subsequently, CH3OH is added to the vapor atmosphere, and its contracting effect on the water-swollen films is monitored, revealing a co-nonsolvency-type behavior for PNIPMAM and PSPE. SR measurements indicate that PSPE and PNIPMAM behave significantly different during the H2O swelling and subsequent exposure to CH3OH, not only with respect to the amounts of absorbed water and CH3OH, but also to the cosolvent-induced contraction mechanisms. While PSPE thin films exhibit an abrupt one-step contraction, the contraction of PNIPMAM thin films occurs in two steps. FTIR studies corroborate these findings on a molecular scale and reveal the role of the specific functional groups, both during the swelling and the cosolvent-induced switching of the solvation state. Y1 - 2021 U6 - https://doi.org/10.1021/acs.macromol.0c02281 SN - 0024-9297 SN - 1520-5835 VL - 54 IS - 3 SP - 1548 EP - 1556 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kreuzer, Lucas A1 - Widmann, Tobias A1 - Geiger, Christina A1 - Wang, Peixi A1 - Vagias, Apostolos N. A1 - Heger, Julian Eliah A1 - Haese, Martin A1 - Hildebrand, Viet A1 - Laschewsky, André A1 - Papadakis, Christine M. A1 - Müller-Buschbaum, Peter T1 - Salt-dependent phase transition behavior of doubly thermoresponsive poly(sulfobetaine)-based diblock copolymer thin films JF - Langmuir : the ACS journal of surfaces and colloids / American Chemical Society N2 - The water vapor-induced swelling, as well as subsequent phase-transition kinetics, of thin films of a diblock copolymer (DBC) loaded with different amounts of the salt NaBr, is investigated in situ. In dilute aqueous solution, the DBC features an orthogonally thermoresponsive behavior. It consists of a zwitterionic poly(sulfobetaine) block, namely, poly(4-(N-(3'-methacrylamidopropyl)-N, N-dimethylammonio) butane-1-sulfonate) (PSBP), showing an upper critical solution temperature, and a nonionic block, namely, poly(N-isopropylmethacrylamide) (PNIPMAM), exhibiting a lower critical solution temperature. The swelling kinetics in D2O vapor at 15 degrees C and the phase transition kinetics upon heating the swollen film to 60 degrees C and cooling back to 15 degrees C are followed with simultaneous time-of-flight neutron reflectometry and spectral reflectance measurements. These are complemented by Fourier transform infrared spectroscopy. The collapse temperature of PNIPMAM and the swelling temperature of PSBP are found at lower temperatures than in aqueous solution, which is attributed to the high polymer concentration in the thin-film geometry. Upon inclusion of sub-stoichiometric amounts (relative to the monomer units) of NaBr in the films, the water incorporation is significantly increased. This increase is mainly attributed to a salting-in effect on the zwitterionic PSBP block. Whereas the addition of NaBr notably shifts the swelling temperature of PSBP to lower temperatures, the collapse temperature of PNIPMAM remains unaffected by the presence of salt in the films. Y1 - 2021 U6 - https://doi.org/10.1021/acs.langmuir.1c01342 SN - 0743-7463 SN - 1520-5827 VL - 37 IS - 30 SP - 9179 EP - 9191 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Wang, Peixi A1 - Geiger, Christina A1 - Kreuzer, Lucas A1 - Widmann, Tobias A1 - Reitenbach, Julija A1 - Liang, Suzhe A1 - Cubitt, Robert A1 - Henschel, Cristiane A1 - Laschewsky, André A1 - Papadakis, Christine M. A1 - Müller-Buschbaum, Peter T1 - Poly(sulfobetaine)-based diblock copolymer thin films in water/acetone atmosphere: modulation of water hydration and co-nonsolvency-triggered film contraction JF - Langmuir : the ACS journal of surfaces and colloids N2 - The water swelling and subsequent solvent exchange including co-nonsolvency behavior of thin films of a doubly thermo-responsive diblock copolymer (DBC) are studied viaspectral reflectance, time-of-flight neutron reflectometry, and Fourier transform infrared spectroscopy. The DBC consists of a thermo-responsive zwitterionic (poly(4-((3-methacrylamidopropyl) dimethylammonio) butane-1-sulfonate)) (PSBP) block, featuring an upper critical solution temperature transition in aqueous media but being insoluble in acetone, and a nonionic poly(N-isopropylmethacrylamide) (PNIPMAM) block, featuring a lower critical solution temperature transition in water, while being soluble in acetone. Homogeneous DBC films of 50-100 nm thickness are first swollen in saturated water vapor (H2OorD2O), before they are subjected to a contraction process by exposure to mixed saturated water/acetone vapor (H2OorD2O/acetone-d6 = 9:1 v/v). The affinity of the DBC film toward H2O is stronger than for D2O, as inferred from the higher film thickness in the swollen state and the higher absorbed water content, thus revealing a pronounced isotope sensitivity. During the co-solvent-induced switching by mixed water/acetone vapor, a two-step film contraction is observed, which is attributed to the delayed expulsion of water molecules and uptake of acetone molecules. The swelling kinetics are compared for both mixed vapors (H2O/acetone-d6 and D2O/acetone-d6) and with those of the related homopolymer films. Moreover, the concomitant variations of the local environment around the hydrophilic groups located in the PSBP and PNIPMAM blocks are followed. The first contraction step turns out to be dominated by the behavior of the PSBP block, where as the second one is dominated by the PNIPMAM block. The unusual swelling and contraction behavior of the latter block is attributed to its co-nonsolvency behavior. Furthermore, we observe cooperative hydration effects in the DBC films, that is, both polymer blocks influence each other's solvation behavior. Y1 - 2022 U6 - https://doi.org/10.1021/acs.langmuir.2c00451 SN - 0743-7463 SN - 1520-5827 VL - 38 IS - 22 SP - 6934 EP - 6948 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Niebuur, Bart-Jan A1 - Puchmayr, Jonas A1 - Herold, Christian A1 - Kreuzer, Lucas A1 - Hildebrand, Viet A1 - Müller-Buschbaum, Peter A1 - Laschewsky, Andre A1 - Papadakis, Christine M. T1 - Polysulfobetaines in aqueous solution and in thin film geometry JF - Materials N2 - Polysulfobetaines in aqueous solution show upper critical solution temperature (UCST) behavior. We investigate here the representative of this class of materials, poly (N,N-dimethyl-N-(3-methacrylamidopropyl) ammonio propane sulfonate) (PSPP), with respect to: (i) the dynamics in aqueous solution above the cloud point as function of NaBr concentration; and (ii) the swelling behavior of thin films in water vapor as function of the initial film thickness. For PSPP solutions with a concentration of 5 wt.%, the temperature dependence of the intensity autocorrelation functions is measured with dynamic light scattering as function of molar mass and NaBr concentration (0-8 mM). We found a scaling of behavior for the scattered intensity and dynamic correlation length. The resulting spinodal temperatures showed a maximum at a certain (small) NaBr concentration, which is similar to the behavior of the cloud points measured previously by turbidimetry. The critical exponent of susceptibility depends on NaBr concentration, with a minimum value where the spinodal temperature is maximum and a trend towards the mean-field value of unity with increasing NaBr concentration. In contrast, the critical exponent of the correlation length does not depend on NaBr concentration and is lower than the value of 0.5 predicted by mean-field theory. For PSPP thin films, the swelling behavior was found to depend on film thickness. A film thickness of about 100 nm turns out to be the optimum thickness needed to obtain fast hydration with H2O. KW - polyzwitterions KW - polysulfobetaines KW - dynamic light scattering KW - phase behavior Y1 - 2018 U6 - https://doi.org/10.3390/ma11050850 SN - 1996-1944 VL - 11 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Adelsberger, Joseph A1 - Grillo, Isabelle A1 - Kulkarni, Amit A1 - Sharp, Melissa A1 - Bivigou Koumba, Achille Mayelle A1 - Laschewsky, André A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - Kinetics of aggregation in micellar solutions of thermoresponsive triblock copolymers - influence of concentration, start and target temperatures JF - Soft matter N2 - In aqueous solution, symmetric triblock copolymers with a thermoresponsive middle block and hydrophobic end blocks form flower-like core-shell micelles which collapse and aggregate upon heating through the cloud point (CP). The collapse of the micellar shell and the intermicellar aggregation are followed in situ and in real-time using time-resolved small-angle neutron scattering (SANS), while heating micellar solutions of a poly((styrene-d(8))-b-(N-isopropyl acrylamide)-b-(styrene-d(8))) triblock copolymer in D2O rapidly through their CP. The influence of polymer concentration as well as of the start and target temperatures is addressed. In all cases, the micellar collapse is very fast. The collapsed micelles immediately form small clusters which contain voids. They densify which slows down or even stops their growth. For low concentrations and target temperatures just above the CP, i.e. shallow temperature jumps, the subsequent growth of the clusters is described by diffusion-limited aggregation. In contrast, for higher concentrations and/or higher target temperatures, i.e. deep temperature jumps, intermicellar bridges dominate the growth. Eventually, in all cases, the clusters coagulate which results in macroscopic phase separation. For shallow temperature jumps, the cluster surfaces stay rough; whereas for deep temperature jumps, a concentration gradient develops at late stages. These results are important for the development of conditions for thermal switching in applications, e.g. for the use of thermoresponsive micellar systems for transport and delivery purposes. Y1 - 2013 U6 - https://doi.org/10.1039/c2sm27152d SN - 1744-683X VL - 9 IS - 5 SP - 1685 EP - 1699 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Miasnikova, Anna A1 - Laschewsky, André A1 - De Paoli, Gabriele A1 - Papadakis, Christine M. A1 - Müller-Buschbaum, Peter A1 - Funari, Sergio S. T1 - Thermoresponsive Hydrogels from Symmetrical Triblock Copolymers Poly(styrene-block-(methoxy diethylene glycol acrylate)-block-styrene) JF - Langmuir N2 - A series of symmetrical, thermo-responsive triblock copolymers was prepared by reversible addition fragmentation chain transfer (RAFT) polymerization, and studied in aqueous solution with respect to their ability to form hydrogels. Triblock copolymers were composed of two identical, permanently hydrophobic outer blocks, made of low molar mass polystyrene, and of a hydrophilic inner block of variable length, consisting of poly(methoxy diethylene glycol acrylate) PMDEGA. The polymers exhibited a LCST-type phase transition in the range of 20-40 degrees C, which markedly depended on molar mass and concentration. Accordingly, the triblock copolymers behaved as amphiphiles at low temperatures, but became water-insoluble at high temperatures. The temperature dependent self-assembly of the amphiphilic block copolymers in aqueous solution was studied by turbidimetry and rheology at concentrations up to 30 wt %, to elucidate the impact of the inner thermoresponsive block on the gel properties. Additionally, small-angle X-ray scattering (SAXS) was performed to access the structural changes in the gel with temperature. For all polymers a gel phase was obtained at low temperatures, which underwent a gel-sol transition at intermediate temperatures, well below the cloud point where phase separation occurred. With increasing length of the PMDEGA inner block, the gel-sol transition shifts to markedly lower concentrations, as well as to higher transition temperatures. For the longest PMDEGA block studied (DPn about 450), gels had already formed at 3.5 wt % at low temperatures. The gel-sol transition of the hydrogels and the LCST-type phase transition of the hydrophilic inner block were found to be independent of each other. Y1 - 2012 U6 - https://doi.org/10.1021/la204665q SN - 0743-7463 VL - 28 IS - 9 SP - 4479 EP - 4490 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zhong, Qi A1 - Adelsberger, Joseph A1 - Niedermeier, M. A. A1 - Golosova, Anastasi A1 - Bivigou Koumba, Achille Mayelle A1 - Laschewsky, André A1 - Funari, S. S. A1 - Papadakis, Christine M. A1 - Müller-Buschbaum, Peter T1 - The influence of selective solvents on the transition behavior of poly(styrene-b-monomethoxydiethylenglycol-acrylate-b-styrene) thick films JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - Thick poly(styrene-b-monomethoxydiethylenglycol-acrylate-b-styrene) [P(S-b-MDEGA-b-S)] films (thickness 5 mu m) are prepared from different solvents on flexible substrates by solution casting and investigated with small-angle X-ray scattering. As the solvents are either PS- or PMDEGA-selective, micelles with different core-shell micellar structures are formed. In PMDEGA-selective solvents, the PS block is the core and PMDEGA is the shell, whereas in PS-selective solvents, the order is reversed. After exposing the films to liquid D2O, the micellar structure inside the films prepared from PMDEGA-selective solvents remains unchanged and only the PMDEGA (shell part) swells. On the contrary, in the films prepared from PS-selective solvents, the micelles revert the core and the shell. This reversal causes more entanglements of the PMDEGA chains between the micelles. Moreover, the thermal collapse transition of the PMDEGA block in liquid D2O is significantly broadened. Irrespective of the solvent used for film preparation, the swollen PMDEGA shell does not show a prominent shrinkage when passing the phase transition, and the transition process occurs via compaction. The collapsed micelles have a tendency to densely pack above the transition temperature. KW - Hydrogel KW - Thin film KW - Thermo-responsive KW - LCST behavior KW - SAXS Y1 - 2013 U6 - https://doi.org/10.1007/s00396-012-2879-4 SN - 0303-402X VL - 291 IS - 6 SP - 1439 EP - 1451 PB - Springer CY - New York ER - TY - JOUR A1 - Adelsberger, Joseph A1 - Kulkarni, Amit A1 - Jain, Abhinav A1 - Wang, Weinan A1 - Bivigou Koumba, Achille Mayelle A1 - Busch, Peter A1 - Pipich, Vitaliy A1 - Holderer, Olaf A1 - Hellweg, Thomas A1 - Laschewsky, André A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - Thermoresponsive PS-b-PNIPAM-b-PS micelles : aggregation behavior, segmental dynamics, and thermal response N2 - We have studied I lie thermal behavior of amphiphilic, symmetric triblock copolymers having short, deuterated polystyrene (PS) end blocks and a large poly(N-isopropylacrylarnicle) (PNIPAM) middle block exhibiting a lower critical solution temperature (LCST) in aqueous solution. A wide range of concentrations (0.1-300 mg/mL) is investigated using it number of analytical methods such as fluorescence correlation spectroscopy (FCS), turbidimetry, dynamic light scattering (DLS), small-angle neutron scattering (SANS), and neutron spin-echo spectroscopy (NSE). The critical micelle concentration is determined using FCS to be 1 mu M or less. The collapse of the micelles at the LCST is investigated using turbidimetry and DLS and shows a weak dependence on the degree of polymerization of the PNIPAM block. SANS with contrast matching allows its to reveal the core-shell Structure of the micelles as well as their correlation as a function of temperature. The segmental dynamics of the PNIPAM shell are studied as a function of temperature and arc found to be faster in the collapsed state than in the swollen state. The mode detected has a linear dispersion in q(2) and is found to be faster in the collapsed state as compared to the swollen state. We attribute this result to the averaging over mobile and immobilized segments. Y1 - 2010 UR - http://pubs.acs.org/journal/mamobx U6 - https://doi.org/10.1021/Ma902714p SN - 0024-9297 ER - TY - JOUR A1 - Bivigou Koumba, Achille Mayelle A1 - Goernitz, Eckhard A1 - Laschewsky, André A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - Thermoresponsive amphiphilic symmetrical triblock copolymers with a hydrophilic middle block made of poly(N- isopropylacrylamide) : synthesis, self-organization, and hydrogel formation N2 - Several series of symmetrical triblock copolymers were synthesized by the reversible addition fragmentation chain transfer method. They consist of a long block of poly(N-isopropylacrylamide) as hydrophilic, thermoresponsive middle block, which is end-capped by two small strongly hydrophobic blocks made from five different vinyl polymers. The association of the amphiphilic polymers was studied in dilute and concentrated aqueous solution. The polymer micelles found at low concentrations form hydrogels at high concentrations, typically above 30-35 wt.%. Hydrogel formation and the thermosensitive rheological behavior were studied exemplarily for copolymers with hydrophobic blocks of polystyrene, poly(2-ethylhexyl acrylate), and poly(n-octadecyl acrylate). All systems exhibited a cloud point around 30 A degrees C. Heating beyond the cloud point initially favors hydrogel formation but continued heating results in macroscopic phase separation. The rheological behavior suggests that the copolymers associate into flower-like micelles, with only a small share of polymers that bridge the micelles and act as physical cross-linkers, even at high concentrations. Y1 - 2010 UR - http://www.springerlink.com/content/101551 U6 - https://doi.org/10.1007/s00396-009-2179-9 SN - 0303-402X ER - TY - JOUR A1 - Bivigou Koumba, Achille Mayelle A1 - Kristen, Juliane A1 - Laschewsky, André A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - Synthesis of symmetrical triblock copolymers of styrene and N-isopropylacrylamide using bifunctional bis(trithiocarbonate)s as RAFT agents N2 - Six new bifunctional bis(trithiocarbonate)s were explored as RAFT agents for synthesizing amphiphilic triblock copolymers ABA and BAB, with hydrophilic "A" blocks made from N-isopropylacrylamide and hydrophobic "B" blocks made from styrene. Whereas the extension of poly(N-isopropylacrylamide) by styrene was not effective, polystyrene macroRAFT agents provided the block copolymers efficiently. End group analysis by H-1 NMR spectroscopy supported molar mass analysis and revealed an unexpected side reaction for certain bis(trithiocarbonate)s, namely a fragmentation to simple trithiocarbonates while extruding ethylene-trithiocarbonate. The amphiphilic block copolymers with short polystyrene blocks are directly soluble in water and self-organize into thermo-responsive micellar aggregates. Y1 - 2009 UR - http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291521-3935 U6 - https://doi.org/10.1002/macp.200800575 SN - 1022-1352 ER - TY - JOUR A1 - Kyriakos, Konstantinos A1 - Aravopoulou, Dionysia A1 - Augsbach, Lukas A1 - Sapper, Josef A1 - Ottinger, Sarah A1 - Psylla, Christina A1 - Rafat, Ali Aghebat A1 - Benitez-Montoya, Carlos Adrian A1 - Miasnikova, Anna A1 - Di, Zhenyu A1 - Laschewsky, André A1 - Müller-Buschbaum, Peter A1 - Kyritsis, Apostolos A1 - Papadakis, Christine M. T1 - Novel thermoresponsive block copolymers having different architectures-structural, rheological, thermal, and dielectric investigations JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - Thermoresponsive block copolymers comprising long, hydrophilic, nonionic poly(methoxy diethylene glycol acrylate) (PMDEGA) blocks and short hydrophobic polystyrene (PS) blocks are investigated in aqueous solution. Various architectures, namely diblock, triblock, and starblock copolymers are studied as well as a PMDEGA homopolymer as reference, over a wide concentration range. For specific characterization methods, polymers were labeled, either by partial deuteration (for neutron scattering studies) or by fluorophores. Using fluorescence correlation spectroscopy, critical micellization concentrations are identified and the hydrodynamic radii of the micelles, r (h) (mic) , are determined. Using dynamic light scattering, the behavior of r (h) (mic) in dependence on temperature and the cloud points are measured. Small-angle neutron scattering enabled the detailed structural investigation of the micelles and their aggregates below and above the cloud point. Viscosity measurements are carried out to determine the activation energies in dependence on the molecular architecture. Differential scanning calorimetry at high polymer concentration reveals the glass transition of the polymers, the fraction of uncrystallized water and effects of the phase transition at the cloud point. Dielectric relaxation spectroscopy shows that the polarization changes reversibly at the cloud point, which reflects the formation of large aggregates upon heating through the cloud point and their redissolution upon cooling. KW - Block copolymers KW - Thermoresponsive KW - Structural investigations KW - Mechanical properties KW - Thermal behavior KW - Dielectric properties Y1 - 2014 U6 - https://doi.org/10.1007/s00396-014-3282-0 SN - 0303-402X SN - 1435-1536 VL - 292 IS - 8 SP - 1757 EP - 1774 PB - Springer CY - New York ER - TY - JOUR A1 - Kyriakos, Konstantinos A1 - Philipp, Martine A1 - Adelsberger, Joseph A1 - Jaksch, Sebastian A1 - Berezkin, Anatoly V. A1 - Lugo, Dersy M. A1 - Richtering, Walter A1 - Grillo, Isabelle A1 - Miasnikova, Anna A1 - Laschewsky, André A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - Cononsolvency of water/methanol mixtures for PNIPAM and PS-b-PNIPAM: pathway of aggregate formation investigated using time-resolved SANS JF - Macromolecules : a publication of the American Chemical Society N2 - We investigate the cononsolvency effect of poly(N-isopropylacrylamide) (PNIPAM) in mixtures of water and methanol. Two systems are studied: micellar solutions of polystyrene-b-poly(N-isopropylacrylamide) (PS-b-PNIPAM) diblock copolymers and, as a reference, solutions of PNIPAM homopolymers, both at a concentration of 20 mg/mL in DO. Using a stopped-flow instrument, fully deuterated methanol was rapidly added to these solutions at volume fractions between 10 and 20%. Time-resolved turbidimetry revealed aggregate formation within 10-100 s. The structural changes on mesoscopic length scales were followed by time-resolved small-angle neutron scattering (TR-SANS) with a time resolution of 0.1 s. In both systems, the pathway of the aggregation depends on the content of deuterated methanol; however, it is fundamentally different for homopolymer and diblock copolymer solutions: In the former, very large aggregates (>150 nm) are formed within the dead time of the setup, gradient appears at their surface in the late stages. In contrast, the growth of the aggregates in the latter system features different regimes, and the final aggregate size is 50 nm, thus much smaller than for the homopolymer. For the diblock copolymer, the time dependence of the aggregate radius can be described by two models: In the initial stage, the diffusion-limited coalescence model describes the data well; however, the resulting coalescence time is unreasonably high. In the late stage, a logarithmic coalescence model based on an energy barrier which is proportional to the aggregate radius is successfully applied. and a concentration Y1 - 2014 U6 - https://doi.org/10.1021/ma501434e SN - 0024-9297 SN - 1520-5835 VL - 47 IS - 19 SP - 6867 EP - 6879 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Adelsberger, Joseph A1 - Bivigou Koumba, Achille Mayelle A1 - Miasnikova, Anna A1 - Busch, Peter A1 - Laschewsky, André A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - Polystyrene-block-poly (methoxy diethylene glycol acrylate)-block-polystyrene triblock copolymers in aqueous solution-a SANS study of the temperature-induced switching behavior JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - A concentrated solution of a symmetric triblock copolymer with a thermoresponsive poly(methoxy diethylene glycol acrylate) (PMDEGA) middle block and short hydrophobic, fully deuterated polystyrene end blocks is investigated in D2O where it undergoes a lower critical solution temperature-type phase transition at ca. 36 A degrees C. Small-angle neutron scattering (SANS) in a wide temperature range (15-50 A degrees C) is used to characterize the size and inner structure of the micelles as well as the correlation between the micelles and the formation of aggregates by the micelles above the cloud point (CP). A model featuring spherical core-shell micelles, which are correlated by a hard-sphere potential or a sticky hard-sphere potential together with a Guinier form factor describing aggregates formed by the micelles above the CP, fits the SANS curves well in the entire temperature range. The thickness of the thermoresponsive micellar PMDEGA shell as well as the hard-sphere radius increase slightly already below the cloud point. Whereas the thickness of the thermoresponsive micellar shell hardly shrinks when heating through the CP and up to 50 A degrees C, the hard-sphere radius decreases within 3.5 K at the CP. The volume fraction decreases already significantly below the CP, which may be at the origin of the previously observed gel-sol transition far below the CP (Miasnikova et al., Langmuir 28: 4479-4490, 2012). Above the CP, small, and at higher temperatures, large aggregates are formed by the micelles. KW - Hydrogel KW - Thermoresponsive KW - LCST behavior KW - SANS Y1 - 2015 U6 - https://doi.org/10.1007/s00396-015-3535-6 SN - 0303-402X SN - 1435-1536 VL - 293 IS - 5 SP - 1515 EP - 1523 PB - Springer CY - New York ER - TY - JOUR A1 - Zhong, Qi A1 - Wang, Weinan A1 - Adelsberger, Joseph A1 - Golosova, Anastasia A1 - Koumba, Achille M. Bivigou A1 - Laschewsky, André A1 - Funari, Sergio S. A1 - Perlich, Jan A1 - Roth, Stephan V. A1 - Papadakis, Christine M. A1 - Müller-Buschbaum, Peter T1 - Collapse transition in thin films of poly(methoxydiethylenglycol acrylate) JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - The thermal behavior of poly(methoxydiethylenglycol acrylate) (PMDEGA) is studied in thin hydrogel films on solid supports and is compared with the behavior in aqueous solution. The PMDEGA hydrogel film thickness is varied from 2 to 422 nm. Initially, these films are homogenous, as measured with optical microscopy, atomic force microscopy, X-ray reflectivity, and grazing-incidence small-angle X-ray scattering (GISAXS). However, they tend to de-wet when stored under ambient conditions. Along the surface normal, no long-ranged correlations between substrate and film surface are detected with GISAXS, due to the high mobility of the polymer at room temperature. The swelling of the hydrogel films as a function of the water vapor pressure and the temperature are probed for saturated water vapor pressures between 2,380 and 3,170 Pa. While the swelling capability is found to increase with water vapor pressure, swelling in dependence on the temperature revealed a collapse phase transition of a lower critical solution temperature type. The transition temperature decreases from 40.6 A degrees C to 36.6 A degrees C with increasing film thickness, but is independent of the thickness for very thin films below a thickness of 40 nm. The observed transition temperature range compares well with the cloud points observed in dilute (0.1 wt.%) and semi-dilute (5 wt.%) solution which decrease from 45 A degrees C to 39 A degrees C with increasing concentration. KW - Hydrogel KW - Thin film KW - Thermoresponsive KW - LCST behavior KW - GISAXS KW - AFM Y1 - 2011 U6 - https://doi.org/10.1007/s00396-011-2384-1 SN - 0303-402X VL - 289 IS - 5-6 SP - 569 EP - 581 PB - Springer CY - New York ER - TY - JOUR A1 - Zhong, Qi A1 - Metwalli, Ezzeldin A1 - Kaune, Gunar A1 - Rawolle, Monika A1 - Bivigou Koumba, Achille Mayelle A1 - Laschewsky, André A1 - Papadakis, Christine M. A1 - Cubitt, Robert A1 - Müller-Buschbaum, Peter T1 - Switching kinetics of thin thermo-responsive hydrogel films of poly(monomethoxy-diethyleneglycol-acrylate) probed with in situ neutron reflectivity JF - Soft matter N2 - The switching kinetics of thin thermo-responsive hydrogel films of poly(monomethoxy-diethyleneglycol-acrylate) (PMDEGA) are investigated. Homogeneous and smooth PMDEGA films with a thickness of 35.9 nm are prepared on silicon substrates by spin coating. As probed with white light interferometry, PMDEGA films with a thickness of 35.9 nm exhibit a phase transition temperature of the lower critical solution temperature (LCST) type of 40 degrees C. In situ neutron reflectivity is performed to investigate the thermo-responsive behavior of these PMDEGA hydrogel films in response to a sudden thermal stimulus in deuterated water vapor atmosphere. The collapse transition proceeds in a complex way which can be seen as three steps. The first step is the shrinkage of the initially swollen film by a release of water. In the second step the thickness remains constant with water molecules embedded in the film. In the third step, perhaps due to a conformational rearrangement of the collapsed PMDEGA chains, water is reabsorbed from the vapor atmosphere, thereby giving rise to a relaxation process. Both the shrinkage and relaxation processes can be described by a simple model of hydrogel deswelling. Y1 - 2012 U6 - https://doi.org/10.1039/c2sm25401h SN - 1744-683X VL - 8 IS - 19 SP - 5241 EP - 5249 PB - Royal Society of Chemistry CY - Cambridge ER -