TY - JOUR A1 - Kupsch, Andreas A1 - Mueller, Bernd R. A1 - Lange, Axel A1 - Bruno, Giovanni T1 - Microstructure characterisation of ceramics via 2D and 3D X-ray refraction techniques JF - Journal of the European Ceramic Society N2 - 3D imaging techniques are very fashionable nowadays, and allow enormous progress in understanding ceramic microstructure, its evolution, and its link to mechanical, thermal, and transport properties. In this feature article, we report the use of a powerful, yet not so wide-spread, set of X-ray techniques based on refraction effects. X-ray refraction allows determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with a nanometric detectability. While the techniques are limited by the X-ray absorption of the material under investigation, we demonstrate showcases of ceramics and composite materials, where understanding of process parameter influence or simply of microstructural parameters could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. (C) 2016 Elsevier Ltd. All rights reserved. KW - X-ray refraction KW - Porosity KW - Specific surface KW - Crack detection KW - Composites Y1 - 2017 U6 - https://doi.org/10.1016/j.jeurceramsoc.2016.12.031 SN - 0955-2219 SN - 1873-619X VL - 37 SP - 1879 EP - 1889 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Shahnejat-Bushehri, Sara A1 - Allu, Annapurna Devi A1 - Mehterov, Nikolay A1 - Thirumalaikumar, Venkatesh P. A1 - Alseekh, Saleh A1 - Fernie, Alisdair R. A1 - Mueller-Roeber, Bernd A1 - Balazadeh, Salma T1 - Arabidopsis NAC Transcription Factor JUNGBRUNNEN1 Exerts Conserved Control Over Gibberellin and Brassinosteroid Metabolism and Signaling Genes in Tomato JF - Frontiers in plant science N2 - The Arabidopsis thaliana NAC transcription factor JUNGBRUNNEN1 (AtJUB1) regulates growth by directly repressing GA3ox1 and DWF4, two key genes involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis, respectively, leading to GA and BR deficiency phenotypes. AtJUB1 also reduces the expression of PIF4, a bHLH transcription factor that positively controls cell elongation, while it stimulates the expression of DELLA genes, which are important repressors of growth. Here, we extend our previous findings by demonstrating that AtJUB1 induces similar GA and BR deficiency phenotypes and changes in gene expression when overexpressed in tomato (Solanum lycopersicum). Importantly, and in accordance with the growth phenotypes observed, AtJUB1 inhibits the expression of growth-supporting genes, namely the tomato orthologs of GA3ox1, DWF4 and PIF4, but activates the expression of DELLA orthologs, by directly binding to their promoters. Overexpression of AtJUB1 in tomato delays fruit ripening, which is accompanied by reduced expression of several ripeningrelated genes, and leads to an increase in the levels of various amino acids (mostly proline, beta-alanine, and phenylalanine), gamma-aminobutyric acid (GABA), and major organic acids including glutamic acid and aspartic acid. The fact that AtJUB1 exerts an inhibitory effect on the GA/BR biosynthesis and PIF4 genes but acts as a direct activator of DELLA genes in both, Arabidopsis and tomato, strongly supports the model that the molecular constituents of the JUNGBRUNNEN1 growth control module are considerably conserved across species. KW - Arabidopsis KW - tomato KW - fruit KW - growth KW - transcription factor KW - gibberellic acid KW - brassinosteroid KW - DELLA proteins Y1 - 2017 U6 - https://doi.org/10.3389/fpls.2017.00214 SN - 1664-462X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Watanabe, Mutsumi A1 - Tohge, Takayuki A1 - Balazadeh, Salma A1 - Erban, Alexander A1 - Giavalisco, Patrick A1 - Kopka, Joachim A1 - Mueller-Roeber, Bernd A1 - Fernie, Alisdair R. A1 - Hoefgen, Rainer T1 - Comprehensive Metabolomics Studies of Plant Developmental Senescence JF - Plant Senescence: Methods and Protocols N2 - Leaf senescence is an essential developmental process that involves diverse metabolic changes associated with degradation of macromolecules allowing nutrient recycling and remobilization. In contrast to the significant progress in transcriptomic analysis of leaf senescence, metabolomics analyses have been relatively limited. A broad overview of metabolic changes during leaf senescence including the interactions between various metabolic pathways is required to gain a better understanding of the leaf senescence allowing to link transcriptomics with metabolomics and physiology. In this chapter, we describe how to obtain comprehensive metabolite profiles and how to dissect metabolic shifts during leaf senescence in the model plant Arabidopsis thaliana. Unlike nucleic acid analysis for transcriptomics, a comprehensive metabolite profile can only be achieved by combining a suite of analytic tools. Here, information is provided for measurements of the contents of chlorophyll, soluble proteins, and starch by spectrophotometric methods, ions by ion chromatography, thiols and amino acids by HPLC, primary metabolites by GC/TOF-MS, and secondary metabolites and lipophilic metabolites by LC/ESI-MS. These metabolite profiles provide a rich catalogue of metabolic changes during leaf senescence, which is a helpful database and blueprint to be correlated to future studies such as transcriptome and proteome analyses, forward and reverse genetic studies, or stress-induced senescence studies. KW - Senescence KW - Metabolomics KW - Arabidopsis KW - GC/MS KW - LC/MS KW - HPLC KW - IC Y1 - 2018 SN - 978-1-4939-7672-0 SN - 978-1-4939-7670-6 U6 - https://doi.org/10.1007/978-1-4939-7672-0_28 SN - 1064-3745 SN - 1940-6029 VL - 1744 SP - 339 EP - 358 PB - Humana Press CY - Totowa ER - TY - JOUR A1 - Devkar, Vikas A1 - Thirumalaikumar, Venkatesh P. A1 - Xue, Gang-Ping A1 - Vallarino, Jose G. A1 - Tureckova, Veronika A1 - Strnad, Miroslav A1 - Fernie, Alisdair R. A1 - Hoefgen, Rainer A1 - Mueller-Roeber, Bernd A1 - Balazadeh, Salma T1 - Multifaceted regulatory function of tomato SlTAF1 in the response to salinity stress JF - New phytologist : international journal of plant science N2 - Salinity stress limits plant growth and has a major impact on agricultural productivity. Here, we identify NAC transcription factor SlTAF1 as a regulator of salt tolerance in cultivated tomato (Solanum lycopersicum). While overexpression of SlTAF1 improves salinity tolerance compared with wild-type, lowering SlTAF1 expression causes stronger salinity-induced damage. Under salt stress, shoots of SlTAF1 knockdown plants accumulate more toxic Na+ ions, while SlTAF1 overexpressors accumulate less ions, in accordance with an altered expression of the Na+ transporter genes SlHKT1;1 and SlHKT1;2. Furthermore, stomatal conductance and pore area are increased in SlTAF1 knockdown plants during salinity stress, but decreased in SlTAF1 overexpressors. We identified stress-related transcription factor, abscisic acid metabolism and defence-related genes as potential direct targets of SlTAF1, correlating it with reactive oxygen species scavenging capacity and changes in hormonal response. Salinity-induced changes in tricarboxylic acid cycle intermediates and amino acids are more pronounced in SlTAF1 knockdown than wild-type plants, but less so in SlTAF1 overexpressors. The osmoprotectant proline accumulates more in SlTAF1 overexpressors than knockdown plants. In summary, SlTAF1 controls the tomato’s response to salinity stress by combating both osmotic stress and ion toxicity, highlighting this gene as a promising candidate for the future breeding of stress-tolerant crops. KW - abscisic acid (ABA) KW - ion homeostasis KW - NAC KW - proline KW - salt stress KW - SlTAF1 KW - transcription factors Y1 - 2019 U6 - https://doi.org/10.1111/nph.16247 SN - 0028-646X SN - 1469-8137 VL - 225 IS - 4 SP - 1681 EP - 1698 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Ma, Xuemin A1 - Zhang, Youjun A1 - Tureckova, Veronika A1 - Xue, Gang-Ping A1 - Fernie, Alisdair R. A1 - Mueller-Röber, Bernd A1 - Balazadeh, Salma T1 - The NAC Transcription Factor SlNAP2 Regulates Leaf Senescence and Fruit Yield in Tomato JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Leaf senescence is an essential physiological process in plants that supports the recycling of nitrogen and other nutrients to support the growth of developing organs, including young leaves, seeds, and fruits. Thus, the regulation of senescence is crucial for evolutionary success in wild populations and for increasing yield in crops. Here, we describe the influence of a NAC transcription factor, SlNAP2 (Solanum lycopersicum NAC-like, activated by Apetala3/Pistillata), that controls both leaf senescence and fruit yield in tomato (S. lycopersicum). SlNAP2 expression increases during age-dependent and dark-induced leaf senescence. We demonstrate that SlNAP2 activates SlSAG113 (S. lycopersicum SENESCENCE-ASSOCIATED GENE113), a homolog of Arabidopsis (Arabidopsis thaliana) SAG113, chlorophyll degradation genes such as SlSGR1 (S. lycopersicum senescence-inducible chloroplast stay-green protein 1) and SlPAO (S. lycopersicum pheide a oxygenase), and other downstream targets by directly binding to their promoters, thereby promoting leaf senescence. Furthermore, SlNAP2 directly controls the expression of genes important for abscisic acid (ABA) biosynthesis, S. lycopersicum 9-cis-epoxycarotenoid dioxygenase 1 (SlNCED1); transport, S. lycopersicum ABC transporter G family member 40 (SlABCG40); and degradation, S. lycopersicum ABA 8′-hydroxylase (SlCYP707A2), indicating that SlNAP2 has a complex role in establishing ABA homeostasis during leaf senescence. Inhibiting SlNAP2 expression in transgenic tomato plants impedes leaf senescence but enhances fruit yield and sugar content likely due to prolonged leaf photosynthesis in aging tomato plants. Our data indicate that SlNAP2 has a central role in controlling leaf senescence and fruit yield in tomato. Y1 - 2018 U6 - https://doi.org/10.1104/pp.18.00292 SN - 0032-0889 SN - 1532-2548 VL - 177 IS - 3 SP - 1286 EP - 1302 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Kamranfar, Iman A1 - Xue, Gang-Ping A1 - Tohge, Takayuki A1 - Sedaghatmehr, Mastoureh A1 - Fernie, Alisdair R. A1 - Balazadeh, Salma A1 - Mueller-Roeber, Bernd T1 - Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence JF - New phytologist : international journal of plant science N2 - Leaf senescence is a key process in plants that culminates in the degradation of cellular constituents and massive reprogramming of metabolism for the recovery of nutrients from aged leaves for their reuse in newly developing sinks. We used molecular-biological and metabolomics approaches to identify NAC transcription factor (TF) RD26 as an important regulator of metabolic reprogramming in Arabidopsis thaliana. RD26 directly activates CHLOROPLAST VESICULATION (CV), encoding a protein crucial for chloroplast protein degradation, concomitant with an enhanced protein loss in RD26 over-expressors during senescence, but a reduced decline of protein in rd26 knockout mutants. RD26 also directly activates LKR/SDH involved in lysine catabolism, and PES1 important for phytol degradation. Metabolic profiling revealed reduced c-aminobutyric acid (GABA) in RD26 overexpressors, accompanied by the induction of respective catabolic genes. Degradation of lysine, phytol and GABA is instrumental for maintaining mitochondrial respiration in carbon-limiting conditions during senescence. RD26 also supports the degradation of starch and the accumulation of mono-and disaccharides during senescence by directly enhancing the expression of AMY1, SFP1 and SWEET15 involved in carbohydrate metabolism and transport. Collectively, during senescence RD26 acts by controlling the expression of genes across the entire spectrum of the cellular degradation hierarchy. KW - Arabidopsis KW - fatty acid KW - primary metabolism KW - protein and amino acid degradation KW - respiration KW - senescence Y1 - 2018 U6 - https://doi.org/10.1111/nph.15127 SN - 0028-646X SN - 1469-8137 VL - 218 IS - 4 SP - 1543 EP - 1557 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Omidbakhshfard, Mohammad Amin A1 - Neerakkal, Sujeeth A1 - Gupta, Saurabh A1 - Omranian, Nooshin A1 - Guinan, Kieran J. A1 - Brotman, Yariv A1 - Nikoloski, Zoran A1 - Fernie, Alisdair R. A1 - Mueller-Roeber, Bernd A1 - Gechev, Tsanko S. T1 - A Biostimulant Obtained from the Seaweed Ascophyllum nodosum Protects Arabidopsis thaliana from Severe Oxidative Stress T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Abiotic stresses cause oxidative damage in plants. Here, we demonstrate that foliar application of an extract from the seaweed Ascophyllum nodosum, SuperFifty (SF), largely prevents paraquat (PQ)-induced oxidative stress in Arabidopsis thaliana. While PQ-stressed plants develop necrotic lesions, plants pre-treated with SF (i.e., primed plants) were unaffected by PQ. Transcriptome analysis revealed induction of reactive oxygen species (ROS) marker genes, genes involved in ROS-induced programmed cell death, and autophagy-related genes after PQ treatment. These changes did not occur in PQ-stressed plants primed with SF. In contrast, upregulation of several carbohydrate metabolism genes, growth, and hormone signaling as well as antioxidant-related genes were specific to SF-primed plants. Metabolomic analyses revealed accumulation of the stress-protective metabolite maltose and the tricarboxylic acid cycle intermediates fumarate and malate in SF-primed plants. Lipidome analysis indicated that those lipids associated with oxidative stress-induced cell death and chloroplast degradation, such as triacylglycerols (TAGs), declined upon SF priming. Our study demonstrated that SF confers tolerance to PQ-induced oxidative stress in A. thaliana, an effect achieved by modulating a range of processes at the transcriptomic, metabolic, and lipid levels. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 823 KW - Ascophyllum nodosum KW - Arabidopsis thaliana KW - biostimulant KW - paraquat KW - priming KW - oxidative stress tolerance KW - reactive oxygen species Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445093 SN - 1866-8372 IS - 823 ER - TY - JOUR A1 - Omidbakhshfard, Mohammad Amin A1 - Neerakkal, Sujeeth A1 - Gupta, Saurabh A1 - Omranian, Nooshin A1 - Guinan, Kieran J. A1 - Brotman, Yariv A1 - Nikoloski, Zoran A1 - Fernie, Alisdair R. A1 - Mueller-Roeber, Bernd A1 - Gechev, Tsanko S. T1 - A Biostimulant Obtained from the Seaweed Ascophyllum nodosum Protects Arabidopsis thaliana from Severe Oxidative Stress JF - International Journal of Molecular Sciences N2 - Abiotic stresses cause oxidative damage in plants. Here, we demonstrate that foliar application of an extract from the seaweed Ascophyllum nodosum, SuperFifty (SF), largely prevents paraquat (PQ)-induced oxidative stress in Arabidopsis thaliana. While PQ-stressed plants develop necrotic lesions, plants pre-treated with SF (i.e., primed plants) were unaffected by PQ. Transcriptome analysis revealed induction of reactive oxygen species (ROS) marker genes, genes involved in ROS-induced programmed cell death, and autophagy-related genes after PQ treatment. These changes did not occur in PQ-stressed plants primed with SF. In contrast, upregulation of several carbohydrate metabolism genes, growth, and hormone signaling as well as antioxidant-related genes were specific to SF-primed plants. Metabolomic analyses revealed accumulation of the stress-protective metabolite maltose and the tricarboxylic acid cycle intermediates fumarate and malate in SF-primed plants. Lipidome analysis indicated that those lipids associated with oxidative stress-induced cell death and chloroplast degradation, such as triacylglycerols (TAGs), declined upon SF priming. Our study demonstrated that SF confers tolerance to PQ-induced oxidative stress in A. thaliana, an effect achieved by modulating a range of processes at the transcriptomic, metabolic, and lipid levels. KW - Ascophyllum nodosum KW - Arabidopsis thaliana KW - biostimulant KW - paraquat KW - priming KW - oxidative stress tolerance KW - reactive oxygen species Y1 - 2019 U6 - https://doi.org/10.3390/ijms21020474 SN - 1422-0067 VL - 21 IS - 2 PB - Molecular Diversity Preservation International CY - Basel ER -