TY - JOUR A1 - Hameed, Mazhar A1 - Naumann, Felix T1 - Data Preparation BT - a survey of commercial tools JF - SIGMOD record N2 - Raw data are often messy: they follow different encodings, records are not well structured, values do not adhere to patterns, etc. Such data are in general not fit to be ingested by downstream applications, such as data analytics tools, or even by data management systems. The act of obtaining information from raw data relies on some data preparation process. Data preparation is integral to advanced data analysis and data management, not only for data science but for any data-driven applications. Existing data preparation tools are operational and useful, but there is still room for improvement and optimization. With increasing data volume and its messy nature, the demand for prepared data increases day by day.
To cater to this demand, companies and researchers are developing techniques and tools for data preparation. To better understand the available data preparation systems, we have conducted a survey to investigate (1) prominent data preparation tools, (2) distinctive tool features, (3) the need for preliminary data processing even for these tools and, (4) features and abilities that are still lacking. We conclude with an argument in support of automatic and intelligent data preparation beyond traditional and simplistic techniques. KW - data quality KW - data cleaning KW - data wrangling Y1 - 2020 U6 - https://doi.org/10.1145/3444831.3444835 SN - 0163-5808 SN - 1943-5835 VL - 49 IS - 3 SP - 18 EP - 29 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - Vitagliano, Gerardo A1 - Hameed, Mazhar A1 - Jiang, Lan A1 - Reisener, Lucas A1 - Wu, Eugene A1 - Naumann, Felix T1 - Pollock: a data loading benchmark JF - Proceedings of the VLDB Endowment N2 - Any system at play in a data-driven project has a fundamental requirement: the ability to load data. The de-facto standard format to distribute and consume raw data is CSV. Yet, the plain text and flexible nature of this format make such files often difficult to parse and correctly load their content, requiring cumbersome data preparation steps. We propose a benchmark to assess the robustness of systems in loading data from non-standard CSV formats and with structural inconsistencies. First, we formalize a model to describe the issues that affect real-world files and use it to derive a systematic lpollutionz process to generate dialects for any given grammar. Our benchmark leverages the pollution framework for the csv format. To guide pollution, we have surveyed thousands of real-world, publicly available csv files, recording the problems we encountered. We demonstrate the applicability of our benchmark by testing and scoring 16 different systems: popular csv parsing frameworks, relational database tools, spreadsheet systems, and a data visualization tool. Y1 - 2023 U6 - https://doi.org/10.14778/3594512.3594518 SN - 2150-8097 VL - 16 IS - 8 SP - 1870 EP - 1882 PB - Association for Computing Machinery CY - New York ER -