TY - JOUR A1 - Marwan, Norbert A1 - Nowaczyk, Norbert R. A1 - Kurths, Jürgen A1 - Thiel, Marco T1 - Cross recurrence plot based rescaling of geological time series N2 - The rescaling of geological data series to a geological reference time series is of major interest in many investigations. For example, geophysical borehole data should be correlated to a given data series whose time scale is known in order to achieve an age-depth function or the sedimentation rate for the borehole data. Usually this synchronization is performed visually and by hand. Instead of using this wiggle matching by eye, we present the application of cross recurrence plots for such tasks. Using this method, the synchronization and rescaling of geological data to a given time scale is much easier and faster than by hand. Y1 - 2001 SN - 1029-7006 ER - TY - JOUR A1 - Marwan, Norbert A1 - Thiel, Marco A1 - Nowaczyk, Norbert R. T1 - Cross recurrence plot based synchronization of time series N2 - The method of recurrence plots is extended to the cross recurrence plots (CRP), which among others enables the study of synchronization or time differences in two time series. This is emphasized in a distorted main diagonal in the cross recurrence plot, the line of synchronization (LOS). A non-parametrical fit of this LOS can be used to rescale the time axis of the two data series (whereby one of it is e.g. compressed or stretched) so that they are synchronized. An application of this method to geophysical sediment core data illustrates its suitability for real data. The rock magnetic data of two different sediment cores from the Makarov Basin can be adjusted to each other by using this method, so that they are comparable. Y1 - 2002 UR - http://arxiv.org/abs/physics/0201062 ER - TY - JOUR A1 - Malik, Nishant A1 - Zou, Y. A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Dynamical regimes and transitions in plio-pleistocene Asian monsoon JF - epl : a letters journal exploring the frontiers of physics N2 - We propose a novel approach based on the fluctuation of similarity to identify regimes of distinct dynamical complexity in short time series. A statistical test is developed to estimate the significance of the identified transitions. Our method is verified by uncovering bifurcation structures in several paradigmatic models, providing more complex transitions compared with traditional Lyapunov exponents. In a real-world situation, we apply this method to identify millennial-scale dynamical transitions in Plio-Pleistocene proxy records of the South Asian summer monsoon system. We infer that many of these transitions are induced by the external forcing of the solar insolation and are also affected by internal forcing on Monsoonal dynamics, i.e., the glaciation cycles of the Northern Hemisphere and the onset of the Walker circulation. Y1 - 2012 U6 - https://doi.org/10.1209/0295-5075/97/40009 SN - 0295-5075 VL - 97 IS - 4 PB - EDP Sciences CY - Mulhouse ER - TY - THES A1 - Marwan, Norbert T1 - Recurrence plot techniques for the investigation of recurring phenomena in the system earth T1 - Recurrence-Plot-Techniken zur Untersuchung wiederkehrender Phänomene im System Erde N2 - The habilitation deals with the numerical analysis of the recurrence properties of geological and climatic processes. The recurrence of states of dynamical processes can be analysed with recurrence plots and various recurrence quantification options. In the present work, the meaning of the structures and information contained in recurrence plots are examined and described. New developments have led to extensions that can be used to describe the recurring patterns in both space and time. Other important developments include recurrence plot-based approaches to identify abrupt changes in the system's dynamics, to detect and investigate external influences on the dynamics of a system, the couplings between different systems, as well as a combination of recurrence plots with the methodology of complex networks. Typical problems in geoscientific data analysis, such as irregular sampling and uncertainties, are tackled by specific modifications and additions. The development of a significance test allows the statistical evaluation of quantitative recurrence analysis, especially for the identification of dynamical transitions. Finally, an overview of typical pitfalls that can occur when applying recurrence-based methods is given and guidelines on how to avoid such pitfalls are discussed. In addition to the methodological aspects, the application potential especially for geoscientific research questions is discussed, such as the identification and analysis of transitions in past climates, the study of the influence of external factors to ecological or climatic systems, or the analysis of landuse dynamics based on remote sensing data. N2 - Die Habilitation beschäftigt sich mit der Analyse der Wiederkehreigenschaften geologischer und klimatischer Prozesse. Die Wiederkehr von Zuständen dynamischer Prozesses kann mit recurrence plots und deren verschiedenen Quantifizierungsmöglichkeiten untersucht werden. In der Arbeit wird die Bedeutung der Strukturen und Informationen, die in recurrence plots enthalten sind, untersucht und beschrieben. Neue Entwicklungen führen zu Erweiterungen, die zur Beschreibung räumlich und raumzeitlich wiederkehrender Muster genutzt werden können. Weitere wichtige Entwicklungen umfassen Erweiterungen zur Identifizierung von abrupten Änderungen in der Dynamik, zum Aufspüren und Untersuchen äußerer Einflüsse auf die Dynamik eines Systems als auch von Kopplungen zwischen verschiedenen Systemen, sowie eine Kombination mit der Methodik der komplexen Netzwerke. Typische Probleme geowissenschaftlicher Datenanalyse, wie unregelmäßiges Datensampling und Unsicherheiten in den Daten, werden durch spezielle Modifikationen und Ergänzungen behandelt. Die Entwicklung eines Signifikanztests erlaubt die statistische Bewertung der quantitativen Analyse vor allem für die Betrachtung dynamischer Übergänge. Den Abschluß bildet ein Überblick typischer Fehler, die im Zusammenhang mit dieser Methode auftreten können und wie man diese vermeidet. Neben den methodischen Aspekten werden Anwendungsmöglichkeiten vor allem fü geowissenschaftliche Fragestellungen vorgestellt, wie die Analyse von Klimaänderungen, von externen Einflußfaktoren auf ökologische oder klimatische Systeme, oder der Landnutzungsdynamik anhand von Fernerkundungsdaten. KW - recurrence KW - complex systems KW - palaeoclimate KW - spatial recurrence KW - recurrence plot KW - recurrence network KW - Wiederkehr KW - komplexe Systeme KW - Paläoklima KW - räumliche Wiederkehr KW - Recurrence plot KW - Recurrence network Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441973 SN - 978-3-00-064508-2 ER - TY - JOUR A1 - Agarwal, Ankit A1 - Caesar, Levke A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Merz, Bruno T1 - Network-based identification and characterization of teleconnections on different scales JF - Scientific Reports N2 - Sea surface temperature (SST) patterns can – as surface climate forcing – affect weather and climate at large distances. One example is El Niño-Southern Oscillation (ENSO) that causes climate anomalies around the globe via teleconnections. Although several studies identified and characterized these teleconnections, our understanding of climate processes remains incomplete, since interactions and feedbacks are typically exhibited at unique or multiple temporal and spatial scales. This study characterizes the interactions between the cells of a global SST data set at different temporal and spatial scales using climate networks. These networks are constructed using wavelet multi-scale correlation that investigate the correlation between the SST time series at a range of scales allowing instantaneously deeper insights into the correlation patterns compared to traditional methods like empirical orthogonal functions or classical correlation analysis. This allows us to identify and visualise regions of – at a certain timescale – similarly evolving SSTs and distinguish them from those with long-range teleconnections to other ocean regions. Our findings re-confirm accepted knowledge about known highly linked SST patterns like ENSO and the Pacific Decadal Oscillation, but also suggest new insights into the characteristics and origins of long-range teleconnections like the connection between ENSO and Indian Ocean Dipole. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-45423-5 SN - 2045-2322 VL - 9 PB - Macmillan Publishers Limited CY - London ER - TY - JOUR A1 - Mishra, Praveen Kumar A1 - Prasad, Sushma A1 - Marwan, Norbert A1 - Anoop, A. A1 - Krishnan, R. A1 - Gaye, Birgit A1 - Basavaiah, N. A1 - Stebich, Martina A1 - Menzel, Philip A1 - Riedel, Nils T1 - Contrasting pattern of hydrological changes during the past two millennia from central and northern India BT - regional climate difference or anthropogenic impact? JF - Global and planetary change N2 - High resolution reconstructions of the India Summer Monsoon (ISM) are essential to identify regionally different patterns of climate change and refine predictive models. We find opposing trends of hydrological proxies between northern (Sahiya cave stalagmite) and central India (Lonar Lake) between 100 and 1300 CE with the strongest anti-correlation between 810 and 1300 CE. The apparently contradictory data raise the question if these are related to widely different regional precipitation patterns or reflect human influence in/around the Lonar Lake. By comparing multiproxy data with historical records, we demonstrate that only the organic proxies in the Lonar Lake show evidence of anthropogenic impact. However, evaporite data (mineralogy and delta O-18) are indicative of precipitation/evaporation (P/E) into the Lonar Lake. Back-trajectories of air-mass circulation over northern and central India show that the relative contribution of the Bay of Bengal (BoB) branch of the ISM is crucial for determining the delta O-18 of carbonate proxies only in north India, whereas central India is affected significantly by the Arabian Sea (AS) branch of the ISM. We conclude that the delta O-18 of evaporative carbonates in the Lonar Lake reflects P/E and, in the interval under consideration, is not influenced by source water changes. The opposing trend between central and northern India can be explained by (i) persistent multidecadal droughts over central India between 810 and 1300 CE that provided an effective mechanism for strengthening sub-tropical westerly winds resulting in enhancement of wintertime (non-monsoonal) rainfall over northern parts of the Indian subcontinent, and/or (ii) increased moisture influx to northern India from the depleted BoB source waters. KW - ENSO KW - Isotopes KW - Indian summer monsoon KW - Lonar Lake KW - Stalagmites KW - Westerlies Y1 - 2017 U6 - https://doi.org/10.1016/j.gloplacha.2017.12.005 SN - 0921-8181 SN - 1872-6364 VL - 161 SP - 97 EP - 107 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Marwan, Norbert T1 - Encounters with neighbours BT - current developments of concepts based on recurrence plots and their applications N2 - Diese Arbeit beschäftigt sich mit verschiedenen Aspekten und Anwendungen von Recurrence Plots. Nach einer Übersicht über Methoden, die auf Recurrence Plots basieren, werden neue Komplexitätsmaße eingeführt, die geometrische Strukturen in den Recurrence Plots beschreiben. Diese neuen Maße erlauben die Identifikation von Chaos-Chaos-Übergängen in dynamischen Prozessen. In einem weiteren Schritt werden Cross Recurrence Plots eingeführt, mit denen zwei verschiedene Prozesse untersucht werden. Diese bivariate Analyse ermöglicht die Bewertung von Unterschieden zwischen zwei Prozessen oder das Anpassen der Zeitskalen von zwei Zeitreihen. Diese Technik kann auch genutzt werden, um ähnliche Abschnitte in zwei verschiedenen Datenreihen zu finden. Im Anschluß werden diese neuen Entwicklungen auf Daten verschiedener Art angewendet. Methoden, die auf Recurrence Plots basieren, können an die speziellen Probleme angepaßt werden, so daß viele weitere Anwendungen möglich sind. Durch die Anwendung der neu eingeführten Komplexitätsmaße können Chaos-Chaos-Übergänge in Herzschlagdaten vor dem Auftreten einer lebensbedrohlichen Herzrhythmusstörung festgestellt werden, was für die Entwicklung neuer Therapien dieser Herzrhythmusstörungen von Bedeutung sein könnte. In einem weiteren Beispiel, in dem EEG-Daten aus einem kognitiv orientierten Experiment untersucht werden, ermöglichen diese Komplexitätsmaße das Erkennen von spezifischen Reaktionen im Gehirn bereits in Einzeltests. Normalerweise können diese Reaktionen erst durch die Auswertung von vielen Einzeltests erkannt werden. Mit der Hilfe von Cross Recurrence Plots wird die Existenz einer klimatischen Zirkulation, die der heutigen El Niño/ Southern Oscillation sehr ähnlich ist, im Nordwesten Argentiniens vor etwa 34000 Jahren nachgewiesen. Außerdem können mit Cross Recurrence Plots die Zeitskalen verschiedener Bohrlochdaten aufeinander abgeglichen werden. Diese Methode kann auch dazu genutzt werden, ein geologisches Profil mit Hilfe eines Referenzprofiles mit bekannter Zeitskala zu datieren. Weitere Beispiele aus den Gebieten der Molekularbiologie und der Spracherkennung unterstreichen das Potential dieser Methode. N2 - In this work, different aspects and applications of the recurrence plot analysis are presented. First, a comprehensive overview of recurrence plots and their quantification possibilities is given. New measures of complexity are defined by using geometrical structures of recurrence plots. These measures are capable to find chaos-chaos transitions in processes. Furthermore, a bivariate extension to cross recurrence plots is studied. Cross recurrence plots exhibit characteristic structures which can be used for the study of differences between two processes or for the alignment and search for matching sequences of two data series. The selected applications of the introduced techniques to various kind of data demonstrate their ability. Analysis of recurrence plots can be adopted to the specific problem and thus opens a wide field of potential applications. Regarding the quantification of recurrence plots, chaos-chaos transitions can be found in heart rate variability data before the onset of life threatening cardiac arrhythmias. This may be of importance for the therapy of such cardiac arrhythmias. The quantification of recurrence plots allows to study transitions in brain during cognitive experiments on the base of single trials. Traditionally, for the finding of these transitions the averaging of a collection of single trials is needed. Using cross recurrence plots, the existence of an El Niño/Southern Oscillation-like oscillation is traced in northwestern Argentina 34,000 yrs. ago. In further applications to geological data, cross recurrence plots are used for time scale alignment of different borehole data and for dating a geological profile with a reference data set. Additional examples from molecular biology and speech recognition emphasize the suitability of cross recurrence plots. KW - Recurrence-Plot KW - Cross-Recurrence-Plot KW - Wiederkehrdarstellung KW - Rekurrenzdarstellung KW - Rekurrenzanalyse KW - recurrence plot KW - cross recurrence plot KW - recurrence quantification analysis Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000856 ER - TY - GEN A1 - Goswami, Bedartha A1 - Boers, Niklas A1 - Rheinwalt, Aljoscha A1 - Marwan, Norbert A1 - Heitzig, Jobst A1 - Breitenbach, Sebastian Franz Martin A1 - Kurths, Jürgen T1 - Abrupt transitions in time series with uncertainties T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Identifying abrupt transitions is a key question in various disciplines. Existing transition detection methods, however, do not rigorously account for time series uncertainties, often neglecting them altogether or assuming them to be independent and qualitatively similar. Here, we introduce a novel approach suited to handle uncertainties by representing the time series as a time-ordered sequence of probability density functions. We show how to detect abrupt transitions in such a sequence using the community structure of networks representing probabilities of recurrence. Using our approach, we detect transitions in global stock indices related to well-known periods of politico-economic volatility. We further uncover transitions in the El Nino-Southern Oscillation which coincide with periods of phase locking with the Pacific Decadal Oscillation. Finally, we provide for the first time an 'uncertainty-aware' framework which validates the hypothesis that ice-rafting events in the North Atlantic during the Holocene were synchronous with a weakened Asian summer monsoon. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 576 KW - North-Atlantic climate KW - Indian monsoon KW - Holocene KW - teleconnections KW - variability KW - periods KW - records Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423111 SN - 1866-8372 IS - 576 ER - TY - JOUR A1 - Goswami, Bedartha A1 - Boers, Niklas A1 - Rheinwalt, Aljoscha A1 - Marwan, Norbert A1 - Heitzig, Jobst A1 - Breitenbach, Sebastian Franz Martin A1 - Kurths, Jürgen T1 - Abrupt transitions in time series with uncertainties JF - Nature Communications N2 - Identifying abrupt transitions is a key question in various disciplines. Existing transition detection methods, however, do not rigorously account for time series uncertainties, often neglecting them altogether or assuming them to be independent and qualitatively similar. Here, we introduce a novel approach suited to handle uncertainties by representing the time series as a time-ordered sequence of probability density functions. We show how to detect abrupt transitions in such a sequence using the community structure of networks representing probabilities of recurrence. Using our approach, we detect transitions in global stock indices related to well-known periods of politico-economic volatility. We further uncover transitions in the El Niño-Southern Oscillation which coincide with periods of phase locking with the Pacific Decadal Oscillation. Finally, we provide for the first time an ‘uncertainty-aware’ framework which validates the hypothesis that ice-rafting events in the North Atlantic during the Holocene were synchronous with a weakened Asian summer monsoon. Y1 - 2018 U6 - https://doi.org/10.1038/s41467-017-02456-6 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Maheswaran, Rathinasamy A1 - Agarwal, Ankit A1 - Sivakumar, Bellie A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Wavelet analysis of precipitation extremes over India and teleconnections to climate indices JF - Stochastic Environmental Research and Risk Assessment N2 - Precipitation patterns and extremes are significantly influenced by various climatic factors and large-scale atmospheric circulation patterns. This study uses wavelet coherence analysis to detect significant interannual and interdecadal oscillations in monthly precipitation extremes across India and their teleconnections to three prominent climate indices, namely, Nino 3.4, Pacific Decadal Oscillation, and Indian Ocean Dipole (IOD). Further, partial wavelet coherence analysis is used to estimate the standalone relationship between the climate indices and precipitation after removing the effect of interdependency. The wavelet analysis of monthly precipitation extremes at 30 different locations across India reveals that (a) interannual (2-8 years) and interdecadal (8-32 years) oscillations are statistically significant, and (b) the oscillations vary in both time and space. The results from the partial wavelet coherence analysis reveal that Nino 3.4 and IOD are the significant drivers of Indian precipitation at interannual and interdecadal scales. Intriguingly, the study also confirms that the strength of influence of large-scale atmospheric circulation patterns on Indian precipitation extremes varies with spatial physiography of the region. KW - Extreme precipitation KW - Teleconnection patterns KW - Wavelets KW - Partial wavelet coherence KW - India Y1 - 2019 U6 - https://doi.org/10.1007/s00477-019-01738-3 SN - 1436-3240 SN - 1436-3259 VL - 33 IS - 11-12 SP - 2053 EP - 2069 PB - Springer CY - New York ER - TY - JOUR A1 - Ozturk, Ugur A1 - Marwan, Norbert A1 - Korup, Oliver A1 - Saito, H. A1 - Agarwa, Ankit A1 - Grossman, M. J. A1 - Zaiki, M. A1 - Kurths, Jürgen T1 - Complex networks for tracking extreme rainfall during typhoons JF - Chaos : an interdisciplinary journal of nonlinear science N2 - Reconciling the paths of extreme rainfall with those of typhoons remains difficult despite advanced forecasting techniques. We use complex networks defined by a nonlinear synchronization measure termed event synchronization to track extreme rainfall over the Japanese islands. Directed networks objectively record patterns of heavy rain brought by frontal storms and typhoons but mask out contributions of local convective storms. We propose a radial rank method to show that paths of extreme rainfall in the typhoon season (August-November, ASON) follow the overall southwest-northeast motion of typhoons and mean rainfall gradient of Japan. The associated eye-of-the-typhoon tracks deviate notably and may thus distort estimates of heavy typhoon rainfall. We mainly found that the lower spread of rainfall tracks in ASON may enable better hindcasting than for westerly-fed frontal storms in June and July. Y1 - 2018 U6 - https://doi.org/10.1063/1.5004480 SN - 1054-1500 SN - 1089-7682 VL - 28 IS - 7 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Agarwal, Ankit A1 - Maheswaran, Rathinasamy A1 - Marwan, Norbert A1 - Caesar, Levke A1 - Kurths, Jürgen T1 - Wavelet-based multiscale similarity measure for complex networks JF - The European physical journal : B, Condensed matter and complex systems N2 - In recent years, complex network analysis facilitated the identification of universal and unexpected patterns in complex climate systems. However, the analysis and representation of a multiscale complex relationship that exists in the global climate system are limited. A logical first step in addressing this issue is to construct multiple networks over different timescales. Therefore, we propose to apply the wavelet multiscale correlation (WMC) similarity measure, which is a combination of two state-of-the-art methods, viz. wavelet and Pearson’s correlation, for investigating multiscale processes through complex networks. Firstly we decompose the data over different timescales using the wavelet approach and subsequently construct a corresponding network by Pearson’s correlation. The proposed approach is illustrated and tested on two synthetics and one real-world example. The first synthetic case study shows the efficacy of the proposed approach to unravel scale-specific connections, which are often undiscovered at a single scale. The second synthetic case study illustrates that by dividing and constructing a separate network for each time window we can detect significant changes in the signal structure. The real-world example investigates the behavior of the global sea surface temperature (SST) network at different timescales. Intriguingly, we notice that spatial dependent structure in SST evolves temporally. Overall, the proposed measure has an immense potential to provide essential insights on understanding and extending complex multivariate process studies at multiple scales. KW - Statistical and Nonlinear Physics Y1 - 2018 U6 - https://doi.org/10.1140/epjb/e2018-90460-6 SN - 1434-6028 SN - 1434-6036 VL - 91 IS - 11 PB - Springer CY - New York ER - TY - JOUR A1 - Kurths, Jürgen A1 - Agarwal, Ankit A1 - Shukla, Roopam A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Caesar, Levke A1 - Krishnan, Raghavan A1 - Merz, Bruno T1 - Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach JF - Nonlinear processes in geophysics N2 - A better understanding of precipitation dynamics in the Indian subcontinent is required since India's society depends heavily on reliable monsoon forecasts. We introduce a non-linear, multiscale approach, based on wavelets and event synchronization, for unravelling teleconnection influences on precipitation. We consider those climate patterns with the highest relevance for Indian precipitation. Our results suggest significant influences which are not well captured by only the wavelet coherence analysis, the state-of-the-art method in understanding linkages at multiple timescales. We find substantial variation across India and across timescales. In particular, El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) mainly influence precipitation in the south-east at interannual and decadal scales, respectively, whereas the North Atlantic Oscillation (NAO) has a strong connection to precipitation, particularly in the northern regions. The effect of the Pacific Decadal Oscillation (PDO) stretches across the whole country, whereas the Atlantic Multidecadal Oscillation (AMO) influences precipitation particularly in the central arid and semi-arid regions. The proposed method provides a powerful approach for capturing the dynamics of precipitation and, hence, helps improve precipitation forecasting. Y1 - 2019 U6 - https://doi.org/10.5194/npg-26-251-2019 SN - 1023-5809 SN - 1607-7946 VL - 26 IS - 3 SP - 251 EP - 266 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Agarwal, Ankit A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Öztürk, Ugur A1 - Kurths, Jürgen A1 - Merz, Bruno T1 - Optimal design of hydrometric station networks based on complex network analysis JF - Hydrology and Earth System Sciences N2 - Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure – the weighted degree–betweenness (WDB) measure – to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail. KW - identifying influential nodes KW - climate networks KW - rainfall KW - streamflow KW - synchronization KW - precipitation KW - classification KW - events Y1 - 2020 U6 - https://doi.org/10.5194/hess-24-2235-2020 SN - 1027-5606 SN - 1607-7938 VL - 24 IS - 5 SP - 2235 EP - 2251 PB - Copernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Agarwal, Ankit A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Merz, Bruno A1 - Kurths, Jürgen T1 - Multi-scale event synchronization analysis for unravelling climate processes: a wavelet-based approach JF - Nonlinear processes in geophysics N2 - The temporal dynamics of climate processes are spread across different timescales and, as such, the study of these processes at only one selected timescale might not reveal the complete mechanisms and interactions within and between the (sub-) processes. To capture the non-linear interactions between climatic events, the method of event synchronization has found increasing attention recently. The main drawback with the present estimation of event synchronization is its restriction to analysing the time series at one reference timescale only. The study of event synchronization at multiple scales would be of great interest to comprehend the dynamics of the investigated climate processes. In this paper, the wavelet-based multi-scale event synchronization (MSES) method is proposed by combining the wavelet transform and event synchronization. Wavelets are used extensively to comprehend multi-scale processes and the dynamics of processes across various timescales. The proposed method allows the study of spatio-temporal patterns across different timescales. The method is tested on synthetic and real-world time series in order to check its replicability and applicability. The results indicate that MSES is able to capture relationships that exist between processes at different timescales. Y1 - 2017 U6 - https://doi.org/10.5194/npg-24-599-2017 SN - 1023-5809 VL - 24 SP - 599 EP - 611 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Agarwal, Ankit A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Merz, Bruno A1 - Kurths, Jürgen T1 - Quantifying the roles of single stations within homogeneous regions using complex network analysis JF - Journal of hydrology N2 - Regionalization and pooling stations to form homogeneous regions or communities are essential for reliable parameter transfer, prediction in ungauged basins, and estimation of missing information. Over the years, several clustering methods have been proposed for regional analysis. Most of these methods are able to quantify the study region in terms of homogeneity but fail to provide microscopic information about the interaction between communities, as well as about each station within the communities. We propose a complex network-based approach to extract this valuable information and demonstrate the potential of our approach using a rainfall network constructed from the Indian gridded daily precipitation data. The communities were identified using the network-theoretical community detection algorithm for maximizing the modularity. Further, the grid points (nodes) were classified into universal roles according to their pattern of within- and between-community connections. The method thus yields zoomed-in details of individual rainfall grids within each community. KW - Complex network KW - Event synchronization KW - Rainfall network KW - Z-P approach Y1 - 2018 U6 - https://doi.org/10.1016/j.jhydrol.2018.06.050 SN - 0022-1694 SN - 1879-2707 VL - 563 SP - 802 EP - 810 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Nonlinear analysis of bivariate data with cross recurrence plots N2 - We use the extension of the method of recurrence plots to cross recurrence plots (CRP) which enables a nonlinear analysis of bivariate data. To quantify CRPs, we develop further three measures of complexity mainly basing on diagonal structures in CRPs. The CRP analysis of prototypical model systems with nonlinear interactions demonstrates that this technique enables to find these nonlinear interrelations from bivariate time series, whereas linear correlation tests do not. Applying the CRP analysis to climatological data, we find a complex relationship between rainfall and El Nino data. Y1 - 2001 UR - http://arxiv.org/abs/physics/0201061 ER - TY - JOUR A1 - Menzel, Philip A1 - Gaye, Birgit A1 - Mishra, Praveen Kumar A1 - Anoop, Ambili A1 - Basavaiah, Nathani A1 - Marwan, Norbert A1 - Plessen, Birgit A1 - Prasad, Sushma A1 - Riedel, Nils A1 - Stebich, Martina A1 - Wiesner, Martin G. T1 - Linking Holocene drying trends from Lonar Lake in monsoonal central India to North Atlantic cooling events JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - We present the results of biogeochemical and mineralogical analyses on a sediment core that covers the Holocene sedimentation history of the climatically sensitive, closed, saline, and alkaline Lonar Lake in the core monsoon zone in central India. We compare our results of C/N ratios, stable carbon and nitrogen isotopes, grain-size, as well as amino acid derived degradation proxies with climatically sensitive proxies of other records from South Asia and the North Atlantic region. The comparison reveals some more or less contemporaneous climate shifts. At Lonar Lake, a general long term climate transition from wet conditions during the early Holocene to drier conditions during the late Holocene, delineating the insolation curve, can be reconstructed. In addition to the previously identified periods of prolonged drought during 4.6-3.9 and 2.0-0.6 cal ka that have been attributed to temperature changes in the Indo Pacific Warm Pool, several additional phases of shorter term climate alteration superimposed upon the general climate trend can be identified. These correlate with cold phases in the North Atlantic region. The most pronounced climate deteriorations indicated by our data occurred during 62-5.2,4.6-3.9, and 2.0-0.6 cal ka BP. The strong dry phase between 4.6 and 3.9 cal ka BP at Lonar Lake corroborates the hypothesis that severe climate deterioration contributed to the decline of the Indus Civilisation about 3.9 ka BP. (C) 2014 Elsevier B.V. All rights reserved. KW - Lake sediment KW - Indian monsoon KW - Holocene KW - Climate reconstruction KW - Stable carbon isotope KW - Amino acid Y1 - 2014 U6 - https://doi.org/10.1016/j.palaeo.2014.05.044 SN - 0031-0182 SN - 1872-616X VL - 410 SP - 164 EP - 178 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wessel, Niels A1 - Marwan, Norbert A1 - Meyerfeldt, Udo A1 - Schirdewan, Alexander A1 - Kurths, Jürgen T1 - Recurrence quantification analysis to characterise the heart rate variability before the onset of ventricular tachycardia N2 - Ventricular tachycardia or fibrillation (VT) as fatal cardiac arrhythmias are the main factors triggering sudden cardiac death. The objective of this recurrence quantification analysis approach is to find early signs of sustained VT in patients with an implanted cardioverter-defibrillator (ICD). These devices are able to safeguard patients by returning their hearts to a normal rhythm via strong defibrillatory shocks; additionally, they are able to store at least 1000 beat-to-beat intervals immediately before the onset of a life-threatening arrhythmia. We study the Y1 - 2001 UR - http://link.springer.de/link/service/series/0558/bibs/2199/21990295.htm ER - TY - JOUR A1 - Marwan, Norbert A1 - Schwarz, Udo A1 - Kurths, Jürgen A1 - Strecker, Manfred T1 - ENSO Impact on landslide generation in northwestern Argentina N2 - Climatic changes are of major importance in landslide generation in the Argentine Andes. Increased humidity as a potential influential factor was inferred from the temporal clustering of landslide deposits during a period of significantly wetter climate, 30,000 years ago. A change in seasonality was tested by comparing past (inferred from annual-layered lake deposits, 30,000 years old) and modern (present-day observations) precipitation changes. Quantitative analysis of cross recurrence plots were developed to compare the influence of the El Nino/Southern Oscillation (ENSO) on present and past rainfall variations. This analysis has shown the stronger influence of NE trades in the location of landslide deposits in the intra-andean basin and valleys, what caused a higher contrast between summer and winter rainfall and an increasing of precipitation in La Nina years. This is believed to reduce thresholds for landslide generation in the arid to semiarid intra-andean basins and valleys. Y1 - 2000 SN - 1029-7006 ER - TY - JOUR A1 - Marwan, Norbert A1 - Trauth, Martin H. A1 - Schwarz, Udo A1 - Kurths, Jürgen A1 - Strecker, Manfred T1 - Climate dynamics of varved pleistocene lake sediments in nw Argentina Y1 - 1999 SN - 1029-7006 ER - TY - JOUR A1 - Marwan, Norbert A1 - Kurths, Jürgen A1 - Thomsen, Jesper Skovhus A1 - Felsenberg, Dieter A1 - Saparin, Peter T1 - Three-dimensional quantification of structures in trabecular bone using measures of complexity N2 - The study of pathological changes of bone is an important task in diagnostic procedures of patients with metabolic bone diseases such as osteoporosis as well as in monitoring the health state of astronauts during long-term space flights. The recent availability of high-resolution three-dimensional (3D) imaging of bone challenges the development of data analysis techniques able to assess changes of the 3D microarchitecture of trabecular bone. We introduce an approach based on spatial geometrical properties and define structural measures of complexity for 3D image analysis. These measures evaluate different aspects of organization and complexity of 3D structures, such as complexity of its surface or shape variability. We apply these measures to 3D data acquired by high-resolution microcomputed tomography (mu CT) from human proximal tibiae and lumbar vertebrae at different stages of osteoporotic bone loss. The outcome is compared to the results of conventional static histomorphometry and exhibits clear relationships between the analyzed geometrical features of trabecular bone and loss of bone density, but also indicate that the measures reveal additional information about the structural composition of bone, which were not revealed by the static histomorphometry. Finally, we have studied the dependency of the developed measures of complexity on the spatial resolution of the mu CT data sets. Y1 - 2009 UR - http://pre.aps.org/ U6 - https://doi.org/10.1103/Physreve.79.021903 SN - 1539-3755 ER - TY - JOUR A1 - Zolotova, Nadezhda V. A1 - Ponyavin, Dmitri I. A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Long-term asymmetry in the wings of the butterfly diagram N2 - Aims. Sunspot distribution in the northern and southern solar hemispheres exibit striking synchronous behaviour on the scale of a Schwabe cycle. However, sometimes the bilateral symmetry of the Butterfly diagram relative to the solar equatorial plane breaks down. The investigation of this phenomenon is important to explaining the almost-periodic behaviour of solar cycles. Methods. We use cross-recurrence plots for the study of the time-varying phase asymmetry of the northern and southern hemisphere and compare our results with the latitudinal distribution of the sunspots. Results. We observe a long-term persistence of phase leading in one of the hemispheres, which lasts almost 4 solar cycles and probably corresponds to the Gleissberg cycle. Long-term variations in the hemispheric-leading do not demonstrate clear periodicity but are strongly anti-correlated with the long-term variations in the magnetic equator. Y1 - 2009 UR - http://www.aanda.org/ U6 - https://doi.org/10.1051/0004-6361/200811430 SN - 0004-6361 ER - TY - JOUR A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Comment on "Stochastic analysis of recurrence plots with applications to the detection of deterministic signals" by Rohde et al. : [Physica D 237 (2008) 619-629] N2 - In the recent article "Stochastic analysis of recurrence plots with applications to the detection of deterministic signals" (Physica D 237 (2008) 619-629), Rohde et al. stated that the performance of RQA in order to detect deterministic signals would be below traditional and well-known detectors. However, we have concerns about such a general statement. Based on our own studies we cannot confirm their conclusions. Our findings suggest that the measures of complexity provided by RQA are useful detectors outperforming well-known traditional detectors, in particular for the detection of signals of complex systems, with phase differences or signals modified due to the measurement process. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/01672789 U6 - https://doi.org/10.1016/j.physd.2009.04.018 SN - 0167-2789 ER - TY - JOUR A1 - Schinkel, Stefan A1 - Marwan, Norbert A1 - Dimigen, Olaf A1 - Kurths, Jürgen T1 - Confidence bounds of recurrence-based complexity measures N2 - In the recent past, recurrence quantification analysis (RQA) has gained an increasing interest in various research areas. The complexity measures the RQA provides have been useful in describing and analysing a broad range of data. It is known to be rather robust to noise and nonstationarities. Yet, one key question in empirical research concerns the confidence bounds of measured data. In the present Letter we suggest a method for estimating the confidence bounds of recurrence-based complexity measures. We study the applicability of the suggested method with model and real- life data. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/03759601 U6 - https://doi.org/10.1016/j.physleta.2009.04.045 SN - 0375-9601 ER - TY - JOUR A1 - Voss, Henning A1 - Meyer, Jeannette A1 - Schwonbeck, Susanne A1 - Fritsche, Immo A1 - Hartmann, Bernhard A1 - Wegwarth, Odette A1 - Friedrich, Anke A1 - Buchheister-Knappe, Stefanie A1 - Marwan, Norbert A1 - Bandau, Anja A1 - Bullinger, Hans-Jörg A1 - Weith, Thomas T1 - Portal alumni T2 - Das Ehemaligen-Magazin der Universität Potsdam N2 - Liebe Leserin, lieber Leser, erforschen, was die Welt im Innersten zusammenhält- das ist für viele Studierende ein Traum. Doch welche Opfer muss man bringen, um ihn zu verwirklichen? Welche Bemfsperspektive hat der Bemf Forscher heute noch? Auch viele Absolventen der Universität Potsdam müssen sich diese Fragen beantworten. Zu welchen Antworten einige dabei gekommen sind und welche Probleme sie zu bewältigen haben, vom Spaß am Forschen und von Zukunftsängsten berichten sie in der Rubrik "Forscherkarrieren". Gelder für die Forschung fließen in Deutschland zu spärlich, verglichen mit anderen führenden Industrienationen. So sind die Bedingungen für Forscher hierzulande nicht die besten. Manchen jungen Wissenschaftler zieht es- mitunter notgedrungen- ins Ausland. Wie Deutschland dadurch seine ZukunftsHihigkeit riskiert, thematisiert der Präsident der Fraunhofer-Gesellschaft, Prof. Dr. Hans-Jörg Bullinger, in der Rubrik "wissenstransfer". Auch die Universität ist kein Garant für eine gesicherte Zukunft in der Forschung. Wer sechs Jahre nach der Promotion den Sprung zur Professur nicht geschafft hat, geht einer ungewissen Zukunft als Privatdozent entgegen. Seit einigen Jahren gibt es neben der Habilitation noch einen zweiten Weg zur Professur- die Juniorprofessur. Auch an der Universität Potsdam gibt es seit 2002 Juniorprofessoren, von denen die ersten jetzt evaluiert wurden. Näheres dazu finden Sie ebenfalls in der Rubrik "wissenstransfer". Wer noch nach einer Finanzierungsmöglichkeit für seine Promotion sucht, findet Tipps in der Rubrik "wegweiser". Die Redaktion wünscht Ihnen viel Vergnügen beim Lesen von Portal alumni und freut sich auf zahlreiche Leserbriefe. N2 - Dear readers, many students dream of researching the world's inner and outermost secrets. Still, what sacrifice must one bring in order to achieve this goa/, and what are the professional perspectives being offered to researchers today? Many University of Potsdom alumni have to find answers to these questions as weil. in the section "forscher/eben", a number of alumni discuss their answers, the problems that they have encountered along the way, the enJoyment that they have received through their research and their worries for the future. In Germany, the funding of research on part ofboth the state and the corporate world is sparsein comparison to other leading industrial countries, and the current opportunities for researchers are clearly not the best. in the section ,.wissenstransfer", the president of the Frauenhofer-Gesellschaft, Prof Dr. Hans-jörg Bullinger, discusses how Germany is losing its future potential in the process. Indeed, the university is no guarantee for a secure profossianal future in the research field. A few years ago, the Junior professorship was created as a second path to a Juli professorship, next to the traditional postdoctoral qualification (Habilitation). in 2002, the University of Potsdom began to establish Junior professorships. The first of these are currently being evaluated. More information on this process can be found in the section "wissenstransfer". In addition, suggestions and tips can be found in the section "wegweiser" for those who are seekingfunding opportunities for their dissertation work. T3 - Portal alumni : das Ehemaligen-Magazin der Universität Potsdam - 3/2005 Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-481608 VL - 2005 IS - 3 EP - 58 ER - TY - JOUR A1 - Breitenbach, Sebastian Franz Martin A1 - Adkins, Jess F. A1 - Meyer, Hanno A1 - Marwan, Norbert A1 - Kumar, Kanikicharla Krishna A1 - Haug, Gerald H. T1 - Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India N2 - To calibrate delta O-18 time-series from speleothems in the eastern Indian summer monsoon (ISM) region of India, and to understand the moisture regime over the northern Bay of Bengal (BoB) we analyze the delta O-18 and delta D of rainwater, collected in 2007 and 2008 near Cherrapunji, India. delta D values range from + 18.5 parts per thousand to 144.4 parts per thousand, while delta O-18 varies between +0.8 parts per thousand and 18.8 parts per thousand. The Local Meteoric Water Line (LMWL) is found to be indistinguishable from the Global Meteoric Water Line (GMWL). Late ISM (September-October) rainfall exhibits lowest delta O-18 and delta D values, with little relationship to the local precipitation amount. There is a trend to lighter isotope values over the course of the ISM, but it does not correlate with the patterns of temperature and rainfall amount delta O-18 and delta D time-series have to be interpreted with caution in terms of the 'amount effect' in this subtropical region. We find that the temporal trend in delta O-18 reflects increasing transport distance during the ISM, isotopic changes in the northern BoB surface waters during late ISM, and vapor re-equilibration with rain droplets. Using an isotope box model for surface ocean waters, we quantify the potential influence of river runoff on the isotopic composition of the seasonal freshwater plume in the northern BoB. Temporal variations in this source can contribute up to 25% of the observed changes in stable isotopes of precipitation in NE India. To delineate other moisture sources, we use backward trajectory computations and find a strong correlation between source region and isotopic composition. Palaeoclimatic stable isotope time-series from northeast Indian speleothems likely reflect changes in moisture source and transport pathway, as well as the isotopic composition of the BoB surface water, all of which in turn reflect ISM strength. Stalagmite records from the region can therefore be interpreted as integrated measures of the ISM strength. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/0012821X U6 - https://doi.org/10.1016/j.epsl.2010.01.038 SN - 0012-821X ER - TY - JOUR A1 - Marwan, Norbert T1 - How to avoid potential pitfalls in recurrence plot based data analysis JF - International journal of bifurcation and chaos : in applied sciences and engineering N2 - Recurrence plots and recurrence quantification analysis have become popular in the last two decades. Recurrence based methods have on the one hand a deep foundation in the theory of dynamical systems and are on the other hand powerful tools for the investigation of a variety of problems. The increasing interest encompasses the growing risk of misuse and uncritical application of these methods. Therefore, we point out potential problems and pitfalls related to different aspects of the application of recurrence plots and recurrence quantification analysis. KW - Recurrence plot KW - recurrence quantification analysis KW - time series analysis KW - pitfalls Y1 - 2011 U6 - https://doi.org/10.1142/S0218127411029008 SN - 0218-1274 VL - 21 IS - 4 SP - 1003 EP - 1017 PB - World Scientific CY - Singapore ER - TY - JOUR A1 - Malik, Nishant A1 - Bookhagen, Bodo A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - We present a detailed analysis of summer monsoon rainfall over the Indian peninsular using nonlinear spatial correlations. This analysis is carried out employing the tools of complex networks and a measure of nonlinear correlation for point processes such as rainfall, called event synchronization. This study provides valuable insights into the spatial organization, scales, and structure of the 90th and 94th percentile rainfall events during the Indian summer monsoon (June-September). We furthermore analyse the influence of different critical synoptic atmospheric systems and the impact of the steep Himalayan topography on rainfall patterns. The presented method not only helps us in visualising the structure of the extreme-event rainfall fields, but also identifies the water vapor pathways and decadal-scale moisture sinks over the region. Furthermore a simple scheme based on complex networks is presented to decipher the spatial intricacies and temporal evolution of monsoonal rainfall patterns over the last 6 decades. KW - Indian summer monsoon KW - Event synchronization KW - Complex networks KW - Rainfall patterns Y1 - 2012 U6 - https://doi.org/10.1007/s00382-011-1156-4 SN - 0930-7575 VL - 39 IS - 3-4 SP - 971 EP - 987 PB - Springer CY - New York ER - TY - JOUR A1 - Marwan, Norbert A1 - Beller, Gise A1 - Felsenberg, Dieter A1 - Saparin, Peter A1 - Kurths, Jürgen T1 - quantifying changes in the spatial structure of trabecular bone JF - International journal of bifurcation and chaos : in applied sciences and engineering N2 - We apply recently introduced measures of complexity for the structural quantification of distal tibial bone. For the first time, we are able to investigate the temporal structural alteration of trabecular bone. Based on four patients, we show how the bone may alter due to temporal immobilization. KW - 3D medical image analysis KW - pQCT KW - trabecular bone KW - patient immobilization Y1 - 2012 U6 - https://doi.org/10.1142/S0218127412500277 SN - 0218-1274 VL - 22 IS - 2 PB - World Scientific CY - Singapore ER - TY - JOUR A1 - Goswami, Bedartha A1 - Marwan, Norbert A1 - Feulner, Georg A1 - Kurths, Jürgen T1 - How do global temperature drivers influence each other? JF - European physical journal special topics N2 - We investigate a network of influences connected to global mean temperature. Considering various climatic factors known to influence global mean temperature, we evaluate not only the impacts of these factors on temperature but also the directed dependencies among the factors themselves. Based on an existing recurrence-based connectivity measure, we propose a new and more general measure that quantifies the level of dependence between two time series based on joint recurrences at a chosen time delay. The measures estimated in the analysis are tested for statistical significance using twin surrogates. We find, in accordance with earlier studies, the major drivers for global mean temperature to be greenhouse gases, ENSO, volcanic activity, and solar irradiance. We further uncover a feedback between temperature and ENSO. Our results demonstrate the need to involve multiple, delayed interactions within the drivers of temperature in order to develop a more thorough picture of global temperature variations. Y1 - 2013 U6 - https://doi.org/10.1140/epjst/e2013-01889-8 SN - 1951-6355 VL - 222 IS - 3-4 SP - 861 EP - 873 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Marwan, Norbert A1 - Schinkel, Stefan A1 - Kurths, Jürgen T1 - Recurrence plots 25 years later -Gaining confidence in dynamical transitions JF - epl : a letters journal exploring the frontiers of physics N2 - Recurrence-plot-based time series analysis is widely used to study changes and transitions in the dynamics of a system or temporal deviations from its overall dynamical regime. However, most studies do not discuss the significance of the detected variations in the recurrence quantification measures. In this letter we propose a novel method to add a confidence measure to the recurrence quantification analysis. We show how this approach can be used to study significant changes in dynamical systems due to a change in control parameters, chaos-order as well as chaos-chaos transitions. Finally we study and discuss climate transitions by analysing a marine proxy record for past sea surface temperature. This paper is dedicated to the 25th anniversary of the introduction of recurrence plots. Y1 - 2013 U6 - https://doi.org/10.1209/0295-5075/101/20007 SN - 0295-5075 VL - 101 IS - 2 PB - EDP Sciences CY - Mulhouse ER - TY - JOUR A1 - Itoh, N. A1 - Marwan, Norbert T1 - An extended singular spectrum transformation (SST) for the investigation of Kenyan precipitation data JF - Nonlinear processes in geophysics N2 - In this paper a change-point detection method is proposed by extending the singular spectrum transformation (SST) developed as one of the capabilities of singular spectrum analysis (SSA). The method uncovers change points related with trends and periodicities. The potential of the proposed method is demonstrated by analysing simple model time series including linear functions and sine functions as well as real world data (precipitation data in Kenya). A statistical test of the results is proposed based on a Monte Carlo simulation with surrogate methods. As a result, the successful estimation of change points as inherent properties in the representative time series of both trend and harmonics is shown. With regards to the application, we find change points in the precipitation data of Kenyan towns (Nakuru, Naivasha, Narok, and Kisumu) which coincide with the variability of the Indian Ocean Dipole (IOD) suggesting its impact of extreme climate in East Africa. Y1 - 2013 U6 - https://doi.org/10.5194/npg-20-467-2013 SN - 1023-5809 VL - 20 IS - 4 SP - 467 EP - 481 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Schinkel, Stefan A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Brain signal analysis based on recurrences N2 - The EEG is one of the most commonly used tools in brain research. Though of high relevance in research, the data obtained is very noisy and nonstationary. In the present article we investigate the applicability of a nonlinear data analysis method, the recurrence quantification analysis (RQA), to Such data. The method solely rests on the natural property of recurrence which is a phenomenon inherent to complex systems, such as the brain. We show that this method is indeed suitable for the analysis of EEG data and that it might improve contemporary EEG analysis. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/09284257 U6 - https://doi.org/10.1016/j.jphysparis.2009.05.007 SN - 0928-4257 ER - TY - JOUR A1 - Schmah, Tanya A1 - Marwan, Norbert A1 - Thomsen, Jesper Skovhus A1 - Saparin, Peter T1 - Long range node-strut analysis of trabecular bone microarchitecture JF - Medical physics : the international journal of medical physics research and practice N2 - Purpose: We present a new morphometric measure of trabecular bone microarchitecture, called mean node strength (NdStr), which is part of a newly developed approach called long range nodestrut analysis. Our general aim is to describe and quantify the apparent "latticelike" microarchitecture of the trabecular bone network. Methods: Similar in some ways to the topological node-strut analysis introduced by Garrahan et al. [J. Microsc. 142, 341-349 (1986)], our method is distinguished by an emphasis on long-range trabecular connectivity. Thus, while the topological classification of a pixel (after skeletonization) as a node, strut, or terminus, can be determined from the 3 x 3 neighborhood of that pixel, our method, which does not involve skeletonization, takes into account a much larger neighborhood. In addition, rather than giving a discrete classification of each pixel as a node, strut, or terminus, our method produces a continuous variable, node strength. The node strength is averaged over a region of interest to produce the mean node strength of the region. Results: We have applied our long range node-strut analysis to a set of 26 high-resolution peripheral quantitative computed tomography (pQCT) axial images of human proximal tibiae acquired 17 mm below the tibial plateau. We found that NdStr has a strong positive correlation with trabecular volumetric bone mineral density (BMD). After an exponential transformation, we obtain a Pearson's correlation coefficient of r - 0.97. Qualitative comparison of images with similar BMD but with very different NdStr values suggests that the latter measure has successfully quantified the prevalence of the "latticelike" microarchitecture apparent in the image. Moreover, we found a strong correlation (r - 0.62) between NdStr and the conventional node-terminus ratio (Nd/Tm) of Garrahan et al. The Nd/Tm ratios were computed using traditional histomorphometry performed on bone biopsies obtained at the same location as the pQCT scans. Conclusions: The newly introduced morphometric measure allows a quantitative assessment of the long-range connectivity of trabecular bone. One advantage of this method is that it is based on pQCT images that can be obtained noninvasively from patients, i.e., without having to obtain a bone biopsy from the patient. KW - trabecular bone KW - osteoporosis KW - structure analysis KW - histomorphometry KW - pQCT Y1 - 2011 U6 - https://doi.org/10.1118/1.3622600 SN - 0094-2405 VL - 38 IS - 9 SP - 5003 EP - 5011 PB - American Association of Physicists in Medicine CY - Melville ER - TY - GEN A1 - Agarwal, Ankit A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Merz, Bruno A1 - Kurths, Jürgen T1 - Multi-scale event synchronization analysis for unravelling climate processes BT - a wavelet-based approach T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The temporal dynamics of climate processes are spread across different timescales and, as such, the study of these processes at only one selected timescale might not reveal the complete mechanisms and interactions within and between the (sub-) processes. To capture the non-linear interactions between climatic events, the method of event synchronization has found increasing attention recently. The main drawback with the present estimation of event synchronization is its restriction to analysing the time series at one reference timescale only. The study of event synchronization at multiple scales would be of great interest to comprehend the dynamics of the investigated climate processes. In this paper, the wavelet-based multi-scale event synchronization (MSES) method is proposed by combining the wavelet transform and event synchronization. Wavelets are used extensively to comprehend multi-scale processes and the dynamics of processes across various timescales. The proposed method allows the study of spatio-temporal patterns across different timescales. The method is tested on synthetic and real-world time series in order to check its replicability and applicability. The results indicate that MSES is able to capture relationships that exist between processes at different timescales. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 661 KW - precipitation KW - phase KW - EEG KW - desynchronization KW - interdependences KW - coherence KW - networks KW - monsoon KW - models KW - time Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418274 SN - 1866-8372 IS - 661 ER - TY - JOUR A1 - Lechleitner, Franziska A. A1 - Baldini, James U. L. A1 - Breitenbach, Sebastian Franz Martin A1 - Fohlmeister, Jens Bernd A1 - McIntyre, Cameron A1 - Goswami, Bedartha A1 - Jamieson, Robert A. A1 - van der Voort, Tessa S. A1 - Prufer, Keith A1 - Marwan, Norbert A1 - Culleton, Brendan J. A1 - Kennett, Douglas J. A1 - Asmerom, Yemane A1 - Polyak, Victor A1 - Eglinton, Timothy I. T1 - Hydrological and climatological controls on radiocarbon concentrations in a tropical stalagmite JF - Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society N2 - Precisely-dated stalagmites are increasingly important archives for the reconstruction of terrestrial paleoclimate at very high temporal resolution. In-depth understanding of local conditions at the cave site and of the processes driving stalagmite deposition is of paramount importance for interpreting proxy signals incorporated in stalagmite carbonate. Here we present a sub-decadally resolved dead carbon fraction (DCF) record for a stalagmite from Yok Balum Cave (southern Belize). The record is coupled to parallel stable carbon isotope (delta C-13) and U/Ca measurements, as well as radiocarbon (C-14) measurements from soils overlying the cave system. Using a karst carbon cycle model we disentangle the importance of soil and karst processes on stalagmite DCF incorporation, revealing a dominant host rock dissolution control on total DCF. Covariation between DCF, delta C-13, and U/Ca indicates that karst processes are a common driver of all three parameters, suggesting possible use of delta C-13 and trace element ratios to independently quantify DCF variability. A statistically significant multi-decadal lag of variable length exists between DCF and reconstructed solar activity, suggesting that solar activity influenced regional precipitation in Mesoamerica over the past 1500 years, but that the relationship was non-static. Although the precise nature of the observed lag is unclear, solar-induced changes in North Atlantic oceanic and atmospheric dynamics may play a role. (C) 2016 Elsevier Ltd. All rights reserved. KW - Stalagmite KW - Tropics KW - Radiocarbon KW - Trace elements KW - Hydroclimate Y1 - 2016 U6 - https://doi.org/10.1016/j.gca.2016.08.039 SN - 0016-7037 SN - 1872-9533 VL - 194 SP - 233 EP - 252 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Krämer, Hauke Kai A1 - Gelbrecht, Maximilian A1 - Pavithran, Induja A1 - Sujith, Ravindran A1 - Marwan, Norbert T1 - Optimal state space reconstruction via Monte Carlo decision tree search JF - Nonlinear Dynamics N2 - A novel idea for an optimal time delay state space reconstruction from uni- and multivariate time series is presented. The entire embedding process is considered as a game, in which each move corresponds to an embedding cycle and is subject to an evaluation through an objective function. This way the embedding procedure can be modeled as a tree, in which each leaf holds a specific value of the objective function. By using a Monte Carlo ansatz, the proposed algorithm populates the tree with many leafs by computing different possible embedding paths and the final embedding is chosen as that particular path, which ends at the leaf with the lowest achieved value of the objective function. The method aims to prevent getting stuck in a local minimum of the objective function and can be used in a modular way, enabling practitioners to choose a statistic for possible delays in each embedding cycle as well as a suitable objective function themselves. The proposed method guarantees the optimization of the chosen objective function over the parameter space of the delay embedding as long as the tree is sampled sufficiently. As a proof of concept, we demonstrate the superiority of the proposed method over the classical time delay embedding methods using a variety of application examples. We compare recurrence plot-based statistics inferred from reconstructions of a Lorenz-96 system and highlight an improved forecast accuracy for map-like model data as well as for palaeoclimate isotope time series. Finally, we utilize state space reconstruction for the detection of causality and its strength between observables of a gas turbine type thermoacoustic combustor. KW - State space reconstruction KW - Embedding KW - Optimization KW - Time series analysis KW - Causality KW - Prediction KW - Recurrence analysis Y1 - 2022 U6 - https://doi.org/10.1007/s11071-022-07280-2 SN - 0924-090X SN - 1573-269X VL - 108 IS - 2 SP - 1525 EP - 1545 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Ozturk, Ugur A1 - Malik, Nishant A1 - Cheung, Kevin A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - A network-based comparative study of extreme tropical and frontal storm rainfall over Japan JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - Frequent and intense rainfall events demand innovative techniques to better predict the extreme rainfall dynamics. This task requires essentially the assessment of the basic types of atmospheric processes that trigger extreme rainfall, and then to examine the differences between those processes, which may help to identify key patterns to improve predictive algorithms. We employ tools from network theory to compare the spatial features of extreme rainfall over the Japanese archipelago and surrounding areas caused by two atmospheric processes: the Baiu front, which occurs mainly in June and July (JJ), and the tropical storms from August to November (ASON). We infer from complex networks of satellite-derived rainfall data, which are based on the nonlinear correlation measure of event synchronization. We compare the spatial scales involved in both systems and identify different regions which receive rainfall due to the large spatial scale of the Baiu and tropical storm systems. We observed that the spatial scales involved in the Baiu driven rainfall extremes, including the synoptic processes behind the frontal development, are larger than tropical storms, which even have long tracks during extratropical transitions. We further delineate regions of coherent rainfall during the two seasons based on network communities, identifying the horizontal (east-west) rainfall bands during JJ over the Japanese archipelago, while during ASON these bands align with the island arc of Japan. KW - Extreme rainfall KW - Baiu KW - Tropical storms KW - Event synchronization KW - Complex networks Y1 - 2019 U6 - https://doi.org/10.1007/s00382-018-4597-1 SN - 0930-7575 SN - 1432-0894 VL - 53 IS - 1-2 SP - 521 EP - 532 PB - Springer CY - New York ER - TY - GEN A1 - Agarwal, Ankit A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Öztürk, Ugur A1 - Kurths, Jürgen A1 - Merz, Bruno T1 - Optimal design of hydrometric station networks based on complex network analysis T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure – the weighted degree–betweenness (WDB) measure – to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 951 KW - identifying influential nodes KW - climate networks KW - rainfall KW - streamflow KW - synchronization KW - precipitation KW - classification KW - events Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-471006 SN - 1866-8372 IS - 951 ER - TY - JOUR A1 - Ramos, Antonio M. T. A1 - Builes-Jaramillo, Alejandro A1 - Poveda, German A1 - Goswami, Bedartha A1 - Macau, Elbert E. N. A1 - Kurths, Jürgen A1 - Marwan, Norbert T1 - Recurrence measure of conditional dependence and applications JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Identifying causal relations from observational data sets has posed great challenges in data-driven causality inference studies. One of the successful approaches to detect direct coupling in the information theory framework is transfer entropy. However, the core of entropy-based tools lies on the probability estimation of the underlying variables. Herewe propose a data-driven approach for causality inference that incorporates recurrence plot features into the framework of information theory. We define it as the recurrence measure of conditional dependence (RMCD), and we present some applications. The RMCD quantifies the causal dependence between two processes based on joint recurrence patterns between the past of the possible driver and present of the potentially driven, excepting the contribution of the contemporaneous past of the driven variable. Finally, it can unveil the time scale of the influence of the sea-surface temperature of the Pacific Ocean on the precipitation in the Amazonia during recent major droughts. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevE.95.052206 SN - 2470-0045 SN - 2470-0053 VL - 95 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Marwan, Norbert A1 - Meinke, Anja T1 - Extended recurrence plot analysis and its application to ERP data N2 - We present new measures of complexity and their application to event-related potential data. The new measures are based on structures of recurrence plots and makes the identification of chaos-chaos transitions possible. The application of these measures to data from single-trials of the Oddball experiment can identify laminar states therein. This offers a new way of analyzing event-related activity on a single-trial basis Y1 - 2004 SN - 0218-1274 ER - TY - JOUR A1 - Breitenbach, Sebastian Franz Martin A1 - Rehfeld, Kira A1 - Goswami, Bedartha A1 - Baldini, James U. L. A1 - Ridley, H. E. A1 - Kennett, D. J. A1 - Prufer, K. M. A1 - Aquino, Valorie V. A1 - Asmerom, Yemane A1 - Polyak, V. J. A1 - Cheng, Hai A1 - Kurths, Jürgen A1 - Marwan, Norbert T1 - Constructing Proxy Records from Age models (COPRA) JF - Climate of the past : an interactive open access journal of the European Geosciences Union N2 - Reliable age models are fundamental for any palaeoclimate reconstruction. Available interpolation procedures between age control points are often inadequately reported, and very few translate age uncertainties to proxy uncertainties. Most available modeling algorithms do not allow incorporation of layer counted intervals to improve the confidence limits of the age model in question. We present a framework that allows detection and interactive handling of age reversals and hiatuses, depth-age modeling, and proxy-record reconstruction. Monte Carlo simulation and a translation procedure are used to assign a precise time scale to climate proxies and to translate dating uncertainties to uncertainties in the proxy values. The presented framework allows integration of incremental relative dating information to improve the final age model. The free software package COPRA1.0 facilitates easy interactive usage. Y1 - 2012 U6 - https://doi.org/10.5194/cp-8-1765-2012 SN - 1814-9324 VL - 8 IS - 5 SP - 1765 EP - 1779 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Line structures in recurrence plots N2 - Recurrence plots exhibit line structures which represent typical behaviour of the investigated system. The local slope of these line structures is connected with a specific transformation of the time scales of different segments of the phase-space trajectory. This provides us a better understanding of the structures occurring in recurrence plots. The relationship between the time-scales and line structures are of practical importance in cross recurrence plots. Using this relationship within cross recurrence plots, the time-scales of differently sampled or time- transformed measurements can be adjusted. An application to geophysical measurements illustrates the capability of this method for the adjustment of time-scales in different measurements. (C) 2005 Elsevier B.V. All rights reserved Y1 - 2005 SN - 0375-9601 ER - TY - GEN A1 - Agarwal, Ankit A1 - Caesar, Levke A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Merz, Bruno T1 - Network-based identification and characterization of teleconnections on different scales T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Sea surface temperature (SST) patterns can – as surface climate forcing – affect weather and climate at large distances. One example is El Niño-Southern Oscillation (ENSO) that causes climate anomalies around the globe via teleconnections. Although several studies identified and characterized these teleconnections, our understanding of climate processes remains incomplete, since interactions and feedbacks are typically exhibited at unique or multiple temporal and spatial scales. This study characterizes the interactions between the cells of a global SST data set at different temporal and spatial scales using climate networks. These networks are constructed using wavelet multi-scale correlation that investigate the correlation between the SST time series at a range of scales allowing instantaneously deeper insights into the correlation patterns compared to traditional methods like empirical orthogonal functions or classical correlation analysis. This allows us to identify and visualise regions of – at a certain timescale – similarly evolving SSTs and distinguish them from those with long-range teleconnections to other ocean regions. Our findings re-confirm accepted knowledge about known highly linked SST patterns like ENSO and the Pacific Decadal Oscillation, but also suggest new insights into the characteristics and origins of long-range teleconnections like the connection between ENSO and Indian Ocean Dipole. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 731 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-430520 SN - 1866-8372 IS - 731 ER - TY - JOUR A1 - Marwan, Norbert A1 - Trauth, Martin H. A1 - Vuille, Mathias A1 - Kurths, Jürgen T1 - Comparing modern and Pleistocene ENSO-like influences in NW Argentina using nonlinear time series analysis methods N2 - Higher variability in rainfall and river discharge could be of major importance in landslide generation in the north-western Argentine Andes. Annual layered (varved) deposits of a landslide dammed lake in the Santa Maria Basin (26°S, 66°W) with an age of 30,000 14C years provide an archive of precipitation variability during this time. The comparison of these data with present-day rainfall observations tests the hypothesis that increased rainfall variability played a major role in landslide generation. A potential cause of such variability is the El Niño/ Southern Oscillation (ENSO). The causal link between ENSO and local rainfall is quantified by using a new method of nonlinear data analysis, the quantitative analysis of cross recurrence plots (CRP). This method seeks similarities in the dynamics of two different processes, such as an ocean-atmosphere oscillation and local rainfall. Our analysis reveals significant similarities in the statistics of both modern and palaeo-precipitation data. The similarities in the data suggest that an ENSO-like influence on local rainfall was present at around 30,000 14C years ago. Increased rainfall, which was inferred from a lake balance modeling in a previous study, together with ENSO-like cyclicities could help to explain the clustering of landslides at around 30,000 14C years ago. Y1 - 2003 UR - http://arxiv.org/abs/nlin.CD/0303056 ER - TY - JOUR A1 - Zbilut, J. P. A1 - Giuliani, A. A1 - Colosimo, A. A1 - Mitchell, J. C. A1 - Colafranceschi, M. A1 - Marwan, Norbert A1 - Webber, C. L. A1 - Uversky, V. N. T1 - Charge and hydrophobicity patterning along the sequence predicts the folding mechanism and aggregation of proteins : a computational approach N2 - The presence of partially folded intermediates along the folding funnel of proteins has been suggested to be a signature of potentially aggregating systems. Many studies have concluded that metastable, highly flexible intermediates are the basic elements of the aggregation process. In a previous paper, we demonstrated how the choice between aggregation and folding behavior was influenced by hydrophobicity distribution patterning along the sequence, as quantified by recurrence quantification analysis (RQA) of the Myiazawa-Jernigan coded primary structures. In the present paper, we tried to unify the "partially folded intermediate" and "hydrophobicity/charge" models of protein aggregation verifying the ability of an empirical relation, developed for rationalizing the effect of different mutations on aggregation propensity of acyl-phosphatase and based on the combination of hydrophobicity RQA and charge descriptors, to discriminate in a statistically significant way two different protein populations: (a) proteins that fold by a process passing by partially folded intermediates and (b) proteins that do not present partially folded intermediates Y1 - 2004 SN - 1535-3893 ER - TY - JOUR A1 - Zbilut, J. P. A1 - Mitchell, J. C. A1 - Giuliani, A. A1 - Colosimo, A. A1 - Marwan, Norbert A1 - Webber, C. L. T1 - Singular hydrophobicity patterns and net charge : a mesoscopic principle for protein aggregation/folding N2 - A statistical model describing the propensity for protein aggregation is presented. Only amino-acid hydrophobicity values and calculated net charge are used for the model. The combined effects of hydrophobic patterns as computed by the signal analysis technique, recurrence quantification, plus calculated net charge were included in a function emphasizing the effect of singular hydrophobic patches which were found to be statistically significant for predicting aggregation propensity as quantified by fluorescence studies obtained from the literature. These results suggest preliminary evidence for a mesoscopic principle for protein folding/aggregation. (C) 2004 Elsevier B.V. All rights reserved Y1 - 2004 SN - 0378-4371 ER - TY - JOUR A1 - Trauth, Martin H. A1 - Bookhagen, Bodo A1 - Marwan, Norbert A1 - Strecker, Manfred T1 - Multiple landslide clusters record quaternary climate changes in the northwestern Argentine andes N2 - The chronology of multiple landslide deposits and related lake sediments in the semi-arid eastern Argentine Cordillera suggests that major mass movements cluster in two time periods during the Quaternary, i.e. between 40 and 25 and after 5 14C kyr BP. These clusters may correspond to the Minchin (maximum at around 28-27 14C kyr BP) and Titicaca wet periods (after 3.9 14C kyr BP). The more humid conditions apparently caused enhanced landsliding in this environment. In contrast, no landslide-related damming and associated lake sediments occurred during the Coipasa (11.5- 10 14C yr BP) and Tauca wet periods (14.5-11 14C yr BP). The two clusters at 40-25 and after 5 14C kyr BP may correspond to periods where the El Niño-Southern Oscillation (ENSO) and Tropical Atlantic Sea Surface Temperature Variability (TAV) were active. This, however, was not the case during the Coipasa and Tauca wet periods. Lake-balance modelling of a landslide-dammed lake suggests a 10-15% increase in precipitation and a 3-4 ° C decrease in temperature at ~30 14C kyr BP as compared to the present. In addition, time-series analysis reveals a strong ENSO and TAV during that time. The landslide clusters in northwestern Argentina are therefore best explained by periods of more humid and more variable climates. Y1 - 2003 UR - http://dx.doi.org/10.1016/S0031-0182(03)00273-6 ER - TY - JOUR A1 - Marwan, Norbert A1 - Wessel, Niels A1 - Meyerfeldt, Udo A1 - Schirdewan, Alexander A1 - Kurths, Jürgen T1 - Recurrence-plot-based measures of complexity and its application to heart-rate-variability data N2 - The knowledge of transitions between regular, laminar or chaotic behavior is essential to understand the underlying mechanisms behind complex systems. While several linear approaches are often insufficient to describe such processes, there are several nonlinear methods which however require rather long time observations. To overcome these difficulties, we propose measures of complexity based on vertical structures in recurrence plots and apply them to the logistic map as well as to heart rate variability data. For the logistic map these measures enable us not only to detect transitions between chaotic and periodic states, but also to identify laminar states, i.e. chaos-chaos transitions. The traditional recurrence quantification analysis fails to detect the latter transitions. Applying our new measures to the heart rate variability data, we are able to detect and quantify the laminar phases before a life-threatening cardiac arrhythmia occurs thereby facilitating a prediction of such an event. Our findings could be of importance for the therapy of malignant cardiac arrhythmias. Y1 - 2002 UR - http://arxiv.org/abs/physics/0201064 ER - TY - JOUR A1 - Goswami, Bedartha A1 - Heitzig, Jobst A1 - Rehfeld, Kira A1 - Marwan, Norbert A1 - Anoop, Ambili A1 - Prasad, Sushma A1 - Kurths, Jürgen T1 - Estimation of sedimentary proxy records together with associated uncertainty JF - Nonlinear processes in geophysics N2 - Sedimentary proxy records constitute a significant portion of the recorded evidence that allows us to investigate paleoclimatic conditions and variability. However, uncertainties in the dating of proxy archives limit our ability to fix the timing of past events and interpret proxy record intercomparisons. While there are various age-modeling approaches to improve the estimation of the age-depth relations of archives, relatively little focus has been placed on the propagation of the age (and radiocarbon calibration) uncertainties into the final proxy record. We present a generic Bayesian framework to estimate proxy records along with their associated uncertainty, starting with the radiometric age-depth and proxy-depth measurements, and a radiometric calibration curve if required. We provide analytical expressions for the posterior proxy probability distributions at any given calendar age, from which the expected proxy values and their uncertainty can be estimated. We illustrate our method using two synthetic data sets and then use it to construct the proxy records for groundwater inflow and surface erosion from Lonar lake in central India. Our analysis reveals interrelations between the uncertainty of the proxy record over time and the variance of proxies along the depth of the archive. For the Lonar lake proxies, we show that, rather than the age uncertainties, it is the proxy variance combined with calibration uncertainty that accounts for most of the final uncertainty. We represent the proxy records as probability distributions on a precise, error-free timescale that makes further time series analyses and intercomparisons of proxies relatively simple and clear. Our approach provides a coherent understanding of age uncertainties within sedimentary proxy records that involve radiometric dating. It can be potentially used within existing age modeling structures to bring forth a reliable and consistent framework for proxy record estimation. Y1 - 2014 U6 - https://doi.org/10.5194/npg-21-1093-2014 SN - 1023-5809 VL - 21 IS - 6 SP - 1093 EP - 1111 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Boers, Niklas A1 - Barbosa, Henrique M. J. A1 - Bookhagen, Bodo A1 - Marengo, Jose A. A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Propagation of Strong Rainfall Events from Southeastern South America to the Central Andes JF - Journal of climate N2 - Based on high-spatiotemporal-resolution data, the authors perform a climatological study of strong rainfall events propagating from southeastern South America to the eastern slopes of the central Andes during the monsoon season. These events account for up to 70% of total seasonal rainfall in these areas. They are of societal relevance because of associated natural hazards in the form of floods and landslides, and they form an intriguing climatic phenomenon, because they propagate against the direction of the low-level moisture flow from the tropics. The responsible synoptic mechanism is analyzed using suitable composites of the relevant atmospheric variables with high temporal resolution. The results suggest that the low-level inflow from the tropics, while important for maintaining sufficient moisture in the area of rainfall, does not initiate the formation of rainfall clusters. Instead, alternating low and high pressure anomalies in midlatitudes, which are associated with an eastward-moving Rossby wave train, in combination with the northwestern Argentinean low, create favorable pressure and wind conditions for frontogenesis and subsequent precipitation events propagating from southeastern South America toward the Bolivian Andes. KW - Cold air surges KW - Extreme events KW - Precipitation KW - Subtropical cyclones KW - Convective storms KW - Mesoscale systems Y1 - 2015 U6 - https://doi.org/10.1175/JCLI-D-15-0137.1 SN - 0894-8755 SN - 1520-0442 VL - 28 IS - 19 SP - 7641 EP - 7658 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Stolbova, Veronika A1 - Martin, P. A1 - Bookhagen, Bodo A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka JF - Nonlinear processes in geophysics N2 - This paper employs a complex network approach to determine the topology and evolution of the network of extreme precipitation that governs the organization of extreme rainfall before, during, and after the Indian Summer Monsoon (ISM) season. We construct networks of extreme rainfall events during the ISM (June-September), post-monsoon (October-December), and pre-monsoon (March-May) periods from satellite-derived (Tropical Rainfall Measurement Mission, TRMM) and rain-gauge interpolated (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE) data sets. The structure of the networks is determined by the level of synchronization of extreme rainfall events between different grid cells throughout the Indian subcontinent. Through the analysis of various complex-network metrics, we describe typical repetitive patterns in North Pakistan (NP), the Eastern Ghats (EG), and the Tibetan Plateau (TP). These patterns appear during the pre-monsoon season, evolve during the ISM, and disappear during the post-monsoon season. These are important meteorological features that need further attention and that may be useful in ISM timing and strength prediction. Y1 - 2014 U6 - https://doi.org/10.5194/npg-21-901-2014 SN - 1023-5809 VL - 21 IS - 4 SP - 901 EP - 917 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Eroglu, Deniz A1 - Marwan, Norbert A1 - Prasad, Sushma A1 - Kurths, Jürgen T1 - Finding recurrence networks' threshold adaptively for a specific time series JF - Nonlinear processes in geophysics N2 - Recurrence-plot-based recurrence networks are an approach used to analyze time series using a complex networks theory. In both approaches - recurrence plots and recurrence networks -, a threshold to identify recurrent states is required. The selection of the threshold is important in order to avoid bias of the recurrence network results. In this paper, we propose a novel method to choose a recurrence threshold adaptively. We show a comparison between the constant threshold and adaptive threshold cases to study period-chaos and even period-period transitions in the dynamics of a prototypical model system. This novel method is then used to identify climate transitions from a lake sediment record. Y1 - 2014 U6 - https://doi.org/10.5194/npg-21-1085-2014 SN - 1023-5809 VL - 21 IS - 6 SP - 1085 EP - 1092 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Boers, Niklas A1 - Bookhagen, Bodo A1 - Marengo, Jose A1 - Marwan, Norbert A1 - von Storch, Jin-Song A1 - Kurths, Jürgen T1 - Extreme Rainfall of the South American Monsoon System: A Dataset Comparison Using Complex Networks JF - Journal of climate N2 - In this study, the authors compare six different rainfall datasets for South America with a focus on their representation of extreme rainfall during the monsoon season (December February): the gauge-calibrated TRMM 3B42 V7 satellite product; the near-real-time TRMM 3B42 V7 RT, the GPCP 1 degrees daily (1DD) V1.2 satellite gauge combination product, the Interim ECMWF Re-Analysis (ERA-Interim) product; output of a high-spatial-resolution run of the ECHAM6 global circulation model; and output of the regional climate model Eta. For the latter three, this study can be understood as a model evaluation. In addition to statistical values of local rainfall distributions, the authors focus on the spatial characteristics of extreme rainfall covariability. Since traditional approaches based on principal component analysis are not applicable in the context of extreme events, they apply and further develop methods based on complex network theory. This way, the authors uncover substantial differences in extreme rainfall patterns between the different datasets: (i) The three model-derived datasets yield very different results than the satellite gauge combinations regarding the main climatological propagation pathways of extreme events as well as the main convergence zones of the monsoon system. (ii) Large discrepancies are found for the development of mesoscale convective systems in southeastern South America. (iii) Both TRMM datasets and ECHAM6 indicate a linkage of extreme rainfall events between the central Amazon basin and the eastern slopes of the central Andes, but this pattern is not reproduced by the remaining datasets. The authors' study suggests that none of the three model-derived datasets adequately captures extreme rainfall patterns in South America. Y1 - 2015 U6 - https://doi.org/10.1175/JCLI-D-14-00340.1 SN - 0894-8755 SN - 1520-0442 VL - 28 IS - 3 SP - 1031 EP - 1056 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Donges, Jonathan A1 - Donner, Reik Volker A1 - Trauth, Martin H. A1 - Marwan, Norbert A1 - Schellnhuber, Hans Joachim A1 - Kurths, Jürgen T1 - Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Potential paleoclimatic driving mechanisms acting on human evolution present an open problem of cross-disciplinary scientific interest. The analysis of paleoclimate archives encoding the environmental variability in East Africa during the past 5 Ma has triggered an ongoing debate about possible candidate processes and evolutionary mechanisms. In this work, we apply a nonlinear statistical technique, recurrence network analysis, to three distinct marine records of terrigenous dust flux. Our method enables us to identify three epochs with transitions between qualitatively different types of environmental variability in North and East Africa during the (i) Middle Pliocene (3.35-3.15 Ma B. P.), (ii) Early Pleistocene (2.25-1.6 Ma B. P.), and (iii) Middle Pleistocene (1.1-0.7 Ma B. P.). A deeper examination of these transition periods reveals potential climatic drivers, including (i) large-scale changes in ocean currents due to a spatial shift of the Indonesian throughflow in combination with an intensification of Northern Hemisphere glaciation, (ii) a global reorganization of the atmospheric Walker circulation induced in the tropical Pacific and Indian Ocean, and (iii) shifts in the dominating temporal variability pattern of glacial activity during the Middle Pleistocene, respectively. A reexamination of the available fossil record demonstrates statistically significant coincidences between the detected transition periods and major steps in hominin evolution. This result suggests that the observed shifts between more regular and more erratic environmental variability may have acted as a trigger for rapid change in the development of humankind in Africa. KW - African climate KW - Plio-Pleistocene KW - climate-driven evolution KW - dynamical transitions KW - nonlinear time series analysis Y1 - 2011 U6 - https://doi.org/10.1073/pnas.1117052108 SN - 0027-8424 VL - 108 IS - 51 SP - 20422 EP - 20427 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - McCool, Weston C. A1 - Codding, Brian F. A1 - Vernon, Kenneth B. A1 - Wilson, Kurt M. A1 - Yaworsky, Peter M. A1 - Marwan, Norbert A1 - Kennett, Douglas J. T1 - Climate change-induced population pressure drives high rates of lethal violence in the Prehispanic central Andes JF - Proceedings of the National Academy of Sciences of the United States of America : PNAS N2 - Understanding the influence of climate change and population pressure on human conflict remains a critically important topic in the social sciences. Long-term records that evaluate these dynamics across multiple centuries and outside the range of modern climatic variation are especially capable of elucidating the relative effect of-and the interaction between-climate and demography. This is crucial given that climate change may structure population growth and carrying capacity, while both climate and population influence per capita resource availability. This study couples paleoclimatic and demographic data with osteological evaluations of lethal trauma from 149 directly accelerator mass spectrometry C-14-dated individuals from the Nasca highland region of Peru. Multiple local and supraregional precipitation proxies are combined with a summed probability distribution of 149 C-14 dates to estimate population dynamics during a 700-y study window. Counter to previous findings, our analysis reveals a precipitous increase in violent deaths associated with a period of productive and stable climate, but volatile population dynamics. We conclude that favorable local climate conditions fostered population growth that put pressure on the marginal and highly circumscribed resource base, resulting in violent resource competition that manifested in over 450 y of internecine warfare. These findings help support a general theory of intergroup violence, indicating that relative resource scarcity-whether driven by reduced resource abundance or increased competition-can lead to violence in subsistence societies when the outcome is lower per capita resource availability. KW - climate change KW - population pressure KW - warfare KW - lethal violence KW - Andes Y1 - 2022 U6 - https://doi.org/10.1073/pnas.2117556119 SN - 0027-8424 SN - 1091-6490 VL - 119 IS - 17 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Wendi, Dadiyorto A1 - Merz, Bruno A1 - Marwan, Norbert T1 - Assessing hydrograph similarity and rare runoff dynamics by cross recurrence plots JF - Water resources research N2 - This paper introduces a novel measure to assess similarity between event hydrographs. It is based on cross recurrence plots (CRP) and recurrence quantification analysis (RQA), which have recently gained attention in a range of disciplines when dealing with complex systems. The method attempts to quantify the event runoff dynamics and is based on the time delay embedded phase space representation of discharge hydrographs. A phase space trajectory is reconstructed from the event hydrograph, and pairs of hydrographs are compared to each other based on the distance of their phase space trajectories. Time delay embedding allows considering the multidimensional relationships between different points in time within the event. Hence, the temporal succession of discharge values is taken into account, such as the impact of the initial conditions on the runoff event. We provide an introduction to cross recurrence plots and discuss their parameterization. An application example based on flood time series demonstrates how the method can be used to measure the similarity or dissimilarity of events, and how it can be used to detect events with rare runoff dynamics. It is argued that this methods provides a more comprehensive approach to quantify hydrograph similarity compared to conventional hydrological signatures. KW - runoff dynamics KW - cross recurrence plot in hydrology KW - rare flood dynamics KW - hydrograph similarity KW - time delay embedding for runoff series Y1 - 2019 U6 - https://doi.org/10.1029/2018WR024111 SN - 0043-1397 SN - 1944-7973 VL - 55 IS - 6 SP - 4704 EP - 4726 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Öztürk, Ugur A1 - Marwan, Norbert A1 - von Specht, Sebastian A1 - Korup, Oliver A1 - Jensen, J. T1 - A new centennial sea-level record for Antalya, Eastern Mediterranean JF - Journal of geophysical research-oceans N2 - Quantitative estimates of sea-level rise in the Mediterranean Basin become increasingly accurate thanks to detailed satellite monitoring. However, such measuring campaigns cover several years to decades, while longer-term sea-level records are rare for the Mediterranean. We used a data archeological approach to reanalyze monthly mean sea-level data of the Antalya-I (1935–1977) tide gauge to fill this gap. We checked the accuracy and reliability of these data before merging them with the more recent records of the Antalya-II (1985–2009) tide gauge, accounting for an eight-year hiatus. We obtain a composite time series of monthly and annual mean sea levels spanning some 75 years, providing the longest record for the eastern Mediterranean Basin, and thus an essential tool for studying the region's recent sea-level trends. We estimate a relative mean sea-level rise of 2.2 ± 0.5 mm/year between 1935 and 2008, with an annual variability (expressed here as the standard deviation of the residuals, σresiduals = 41.4 mm) above that at the closest tide gauges (e.g., Thessaloniki, Greece, σresiduals = 29.0 mm). Relative sea-level rise accelerated to 6.0 ± 1.5 mm/year at Antalya-II; we attribute roughly half of this rate (~3.6 mm/year) to tectonic crustal motion and anthropogenic land subsidence. Our study highlights the value of data archeology for recovering and integrating historic tide gauge data for long-term sea-level and climate studies. KW - sea level KW - tide gauge KW - data archeology KW - Mediterranean Sea Y1 - 2018 U6 - https://doi.org/10.1029/2018JC013906 SN - 2169-9275 SN - 2169-9291 VL - 123 IS - 7 SP - 4503 EP - 4517 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Lechleitner, Franziska A. A1 - Breitenbach, Sebastian Franz Martin A1 - Rehfeld, Kira A1 - Ridley, Harriet E. A1 - Asmerom, Yemane A1 - Prufer, Keith M. A1 - Marwan, Norbert A1 - Goswami, Bedartha A1 - Kennett, Douglas J. A1 - Aquino, Valorie V. A1 - Polyak, Victor A1 - Haug, Gerald H. A1 - Eglinton, Timothy I. A1 - Baldini, James U. L. T1 - Tropical rainfall over the last two millennia: evidence for a low-latitude hydrologic seesaw JF - Scientific reports N2 - The presence of a low-to mid-latitude interhemispheric hydrologic seesaw is apparent over orbital and glacial-interglacial timescales, but its existence over the most recent past remains unclear. Here we investigate, based on climate proxy reconstructions from both hemispheres, the inter-hemispherical phasing of the Intertropical Convergence Zone (ITCZ) and the low-to mid-latitude teleconnections in the Northern Hemisphere over the past 2000 years. A clear feature is a persistent southward shift of the ITCZ during the Little Ice Age until the beginning of the 19th Century. Strong covariation between our new composite ITCZ-stack and North Atlantic Oscillation (NAO) records reveals a tight coupling between these two synoptic weather and climate phenomena over decadal-to-centennial timescales. This relationship becomes most apparent when comparing two precisely dated, high-resolution paleorainfall records from Belize and Scotland, indicating that the low-to mid-latitude teleconnection was also active over annual-decadal timescales. It is likely a combination of external forcing, i.e., solar and volcanic, and internal feedbacks, that drives the synchronous ITCZ and NAO shifts via energy flux perturbations in the tropics. Y1 - 2017 U6 - https://doi.org/10.1038/srep45809 SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Ekhtiari, Nikoo A1 - Agarwal, Ankit A1 - Marwan, Norbert A1 - Donner, Reik Volker T1 - Disentangling the multi-scale effects of sea-surface temperatures on global precipitation BT - a coupled networks approach JF - Chaos : an interdisciplinary journal of nonlinear science N2 - The oceans and atmosphere interact via a multiplicity of feedback mechanisms, shaping to a large extent the global climate and its variability. To deepen our knowledge of the global climate system, characterizing and investigating this interdependence is an important task of contemporary research. However, our present understanding of the underlying large-scale processes is greatly limited due to the manifold interactions between essential climatic variables at different temporal scales. To address this problem, we here propose to extend the application of complex network techniques to capture the interdependence between global fields of sea-surface temperature (SST) and precipitation (P) at multiple temporal scales. For this purpose, we combine time-scale decomposition by means of a discrete wavelet transform with the concept of coupled climate network analysis. Our results demonstrate the potential of the proposed approach to unravel the scale-specific interdependences between atmosphere and ocean and, thus, shed light on the emerging multiscale processes inherent to the climate system, which traditionally remain undiscovered when investigating the system only at the native resolution of existing climate data sets. Moreover, we show how the relevant spatial interdependence structures between SST and P evolve across time-scales. Most notably, the strongest mutual correlations between SST and P at annual scale (8-16 months) concentrate mainly over the Pacific Ocean, while the corresponding spatial patterns progressively disappear when moving toward longer time-scales. Published under license by AIP Publishing. Y1 - 2019 U6 - https://doi.org/10.1063/1.5095565 SN - 1054-1500 SN - 1089-7682 VL - 29 IS - 6 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Lechleitner, Franziska A. A1 - Breitenbach, Sebastian Franz Martin A1 - Cheng, Hai A1 - Plessen, Birgit A1 - Rehfeld, Kira A1 - Goswami, Bedartha A1 - Marwan, Norbert A1 - Eroglu, Deniz A1 - Adkins, Jess F. A1 - Haug, Gerald T1 - Climatic and in-cave influences on delta O-18 and delta C-13 in a stalagmite from northeastern India through the last deglaciation JF - Quaternary research : an interdisciplinary journal N2 - Northeastern (NE) India experiences extraordinarily pronounced seasonal climate, governed by the Indian summer monsoon (ISM). The vulnerability of this region to floods and droughts calls for detailed and highly resolved paleoclimate reconstructions to assess the recurrence rate and driving factors of ISM changes. We use stable oxygen and carbon isotope ratios (delta O-18 and delta C-13) from stalagmite MAW-6 from Mawmluh Cave to infer climate and environmental conditions in NE India over the last deglaciation (16-6ka). We interpret stalagmite delta O-18 as reflecting ISM strength, whereas delta C-13 appears to be driven by local hydroclimate conditions. Pronounced shifts in ISM strength over the deglaciation are apparent from the delta O-18 record, similarly to other records from monsoonal Asia. The ISM is weaker during the late glacial (LG) period and the Younger Dryas, and stronger during the BOlling-Allerod and Holocene. Local conditions inferred from the delta C-13 record appear to have changed less substantially over time, possibly related to the masking effect of changing precipitation seasonality. Time series analysis of the delta O-18 record reveals more chaotic conditions during the late glacial and higher predictability during the Holocene, likely related to the strengthening of the seasonal recurrence of the ISM with the onset of the Holocene. KW - Indian Summer Monsoon KW - stalagmite KW - oxygen isotopes KW - carbon isotopes KW - deglaciation Y1 - 2017 U6 - https://doi.org/10.1017/qua.2017.72 SN - 0033-5894 SN - 1096-0287 VL - 88 SP - 458 EP - 471 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Wendi, Dadiyorto A1 - Marwan, Norbert A1 - Merz, Bruno T1 - In Search of Determinism-Sensitive Region to Avoid Artefacts in Recurrence Plots JF - International journal of bifurcation and chaos : in applied sciences and engineering N2 - As an effort to reduce parameter uncertainties in constructing recurrence plots, and in particular to avoid potential artefacts, this paper presents a technique to derive artefact-safe region of parameter sets. This technique exploits both deterministic (incl. chaos) and stochastic signal characteristics of recurrence quantification (i.e. diagonal structures). It is useful when the evaluated signal is known to be deterministic. This study focuses on the recurrence plot generated from the reconstructed phase space in order to represent many real application scenarios when not all variables to describe a system are available (data scarcity). The technique involves random shuffling of the original signal to destroy its original deterministic characteristics. Its purpose is to evaluate whether the determinism values of the original and the shuffled signal remain closely together, and therefore suggesting that the recurrence plot might comprise artefacts. The use of such determinism-sensitive region shall be accompanied by standard embedding optimization approaches, e.g. using indices like false nearest neighbor and mutual information, to result in a more reliable recurrence plot parameterization. KW - Recurrence plot KW - phase space time delay embedding reconstruction KW - artefact avoidance Y1 - 2017 U6 - https://doi.org/10.1142/S0218127418500074 SN - 0218-1274 SN - 1793-6551 VL - 28 IS - 1 PB - World Scientific CY - Singapore ER - TY - JOUR A1 - Trauth, Martin H. A1 - Asrat, Asfawossen A1 - Düsing, Walter A1 - Foerster, Verena A1 - Krämer, K. Hauke A1 - Marwan, Norbert A1 - Maslin, Mark A. A1 - Schäbitz, Frank T1 - Classifying past climate change in the Chew Bahir basin, southern Ethiopia, using recurrence quantification analysis JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - The Chew Bahir Drilling Project (CBDP) aims to test possible linkages between climate and evolution in Africa through the analysis of sediment cores that have recorded environmental changes in the Chew Bahir basin. In this statistical project we consider the Chew Bahir palaeolake to be a dynamical system consisting of interactions between its different components, such as the waterbody, the sediment beneath lake, and the organisms living within and around the lake. Recurrence is a common feature of such dynamical systems, with recurring patterns in the state of the system reflecting typical influences. Identifying and defining these influences contributes significantly to our understanding of the dynamics of the system. Different recurring changes in precipitation, evaporation, and wind speed in the Chew Bahir basin could result in similar (but not identical) conditions in the lake (e.g., depth and area of the lake, alkalinity and salinity of the lake water, species assemblages in the water body, and diagenesis in the sediments). Recurrence plots (RPs) are graphic displays of such recurring states within a system. Measures of complexity were subsequently introduced to complement the visual inspection of recurrence plots, and provide quantitative descriptions for use in recurrence quantification analysis (RQA). We present and discuss herein results from an RQA on the environmental record from six short (< 17 m) sediment cores collected during the CBDP, spanning the last 45 kyrs. The different types of variability and transitions in these records were classified to improve our understanding of the response of the biosphere to climate change, and especially the response of humans in the area. KW - Paleoclimate dynamics KW - Eastern Africa KW - Pleistocene KW - Holocene KW - Time-series analysis KW - Recurrence plot Y1 - 2019 U6 - https://doi.org/10.1007/s00382-019-04641-3 SN - 0930-7575 SN - 1432-0894 VL - 53 IS - 5-6 SP - 2557 EP - 2572 PB - Springer CY - New York ER - TY - JOUR A1 - Krämer, Hauke Kai A1 - Marwan, Norbert T1 - Border effect corrections for diagonal line based recurrence quantification analysis measures JF - Modern physics letters : A, Particles and fields, gravitation, cosmology, nuclear physics N2 - Recurrence Quantification Analysis (RQA) defines a number of quantifiers, which base upon diagonal line structures in the recurrence plot (RP). Due to the finite size of an RP, these lines can be cut by the borders of the RP and, thus, bias the length distribution of diagonal lines and, consequently, the line based RQA measures. In this letter we investigate the impact of the mentioned border effects and of the thickening of diagonal lines in an RP (caused by tangential motion) on the estimation of the diagonal line length distribution, quantified by its entropy. Although a relation to the Lyapunov spectrum is theoretically expected, the mentioned entropy yields contradictory results in many studies. Here we summarize correction schemes for both, the border effects and the tangential motion and systematically compare them to methods from the literature. We show that these corrections lead to the expected behavior of the diagonal line length entropy, in particular meaning zero values in case of a regular motion and positive values for chaotic motion. Moreover, we test these methods under noisy conditions, in order to supply practical tools for applied statistical research. KW - Recurrence plots KW - Recurrence quantification analysis KW - Shannon entropy KW - Dynamical invariants Y1 - 2019 U6 - https://doi.org/10.1016/j.physleta.2019.125977 SN - 0375-9601 SN - 1873-2429 VL - 383 IS - 34 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Krämer, Hauke Kai A1 - Donner, Reik Volker A1 - Heitzig, Jobst A1 - Marwan, Norbert T1 - Recurrence threshold selection for obtaining robust recurrence characteristics in different embedding dimensions JF - Chaos : an interdisciplinary journal of nonlinear science N2 - The appropriate selection of recurrence thresholds is a key problem in applications of recurrence quantification analysis and related methods across disciplines. Here, we discuss the distribution of pairwise distances between state vectors in the studied system’s state space reconstructed by means of time-delay embedding as the key characteristic that should guide the corresponding choice for obtaining an adequate resolution of a recurrence plot. Specifically, we present an empirical description of the distance distribution, focusing on characteristic changes of its shape with increasing embedding dimension. Our results suggest that selecting the recurrence threshold according to a fixed percentile of this distribution reduces the dependence of recurrence characteristics on the embedding dimension in comparison with other commonly used threshold selection methods. Numerical investigations on some paradigmatic model systems with time-dependent parameters support these empirical findings. Recurrence plots (RPs) provide an intuitive tool for visualizing the (potentially multi-dimensional) trajectory of a dynamical system in state space. In case only univariate observations of the system’s overall state are available, time-delay embedding has become a standard procedure for qualitatively reconstructing the dynamics in state space. The selection of a threshold distance 𝜀 , which distinguishes close from distant pairs of (reconstructed) state vectors, is known to have a substantial impact on the recurrence plot and its quantitative characteristics, but its corresponding interplay with the embedding dimension has not yet been explicitly addressed. Here, we point out that the results of recurrence quantification analysis (RQA) and related methods are qualitatively robust under changes of the (sufficiently high) embedding dimension only if the full distribution of pairwise distances between state vectors is considered for selecting 𝜀, which is achieved by consideration of a fixed recurrence rate. Y1 - 2018 U6 - https://doi.org/10.1063/1.5024914 SN - 1054-1500 SN - 1089-7682 VL - 28 IS - 8 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Wendi, Dadiyorto A1 - Marwan, Norbert T1 - Extended recurrence plot and quantification for noisy continuous dynamical systems JF - Chaos : an interdisciplinary journal of nonlinear science N2 - One main challenge in constructing a reliable recurrence plot (RP) and, hence, its quantification [recurrence quantification analysis (RQA)] of a continuous dynamical system is the induced noise that is commonly found in observation time series. This induced noise is known to cause disrupted and deviated diagonal lines despite the known deterministic features and, hence, biases the diagonal line based RQA measures and can lead to misleading conclusions. Although discontinuous lines can be further connected by increasing the recurrence threshold, such an approach triggers thick lines in the plot. However, thick lines also influence the RQA measures by artificially increasing the number of diagonals and the length of vertical lines [e.g., Determinism (DET) and Laminarity (LAM) become artificially higher]. To take on this challenge, an extended RQA approach for accounting disrupted and deviated diagonal lines is proposed. The approach uses the concept of a sliding diagonal window with minimal window size that tolerates the mentioned deviated lines and also considers a specified minimal lag between points as connected. This is meant to derive a similar determinism indicator for noisy signal where conventional RQA fails to capture. Additionally, an extended local minima approach to construct RP is also proposed to further reduce artificial block structures and vertical lines that potentially increase the associated RQA like LAM. The methodology and applicability of the extended local minima approach and DET equivalent measure are presented and discussed, respectively. Y1 - 2018 U6 - https://doi.org/10.1063/1.5025485 SN - 1054-1500 SN - 1089-7682 VL - 28 IS - 8 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Trauth, Martin H. A1 - Marwan, Norbert T1 - Introduction-time series analysis for Earth, climate and life interactions JF - Quaternary science reviews : the international multidisciplinary research and review journal Y1 - 2022 U6 - https://doi.org/10.1016/j.quascirev.2022.107475 SN - 0277-3791 SN - 1873-457X VL - 284 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Agarwal, Ankit A1 - Guntu, Ravikumar A1 - Banerjee, Abhirup A1 - Gadhawe, Mayuri Ashokrao A1 - Marwan, Norbert T1 - A complex network approach to study the extreme precipitation patterns in a river basin JF - Chaos : an interdisciplinary journal of nonlinear science N2 - The quantification of spatial propagation of extreme precipitation events is vital in water resources planning and disaster mitigation. However, quantifying these extreme events has always been challenging as many traditional methods are insufficient to capture the nonlinear interrelationships between extreme event time series. Therefore, it is crucial to develop suitable methods for analyzing the dynamics of extreme events over a river basin with a diverse climate and complicated topography. Over the last decade, complex network analysis emerged as a powerful tool to study the intricate spatiotemporal relationship between many variables in a compact way. In this study, we employ two nonlinear concepts of event synchronization and edit distance to investigate the extreme precipitation pattern in the Ganga river basin. We use the network degree to understand the spatial synchronization pattern of extreme rainfall and identify essential sites in the river basin with respect to potential prediction skills. The study also attempts to quantify the influence of precipitation seasonality and topography on extreme events. The findings of the study reveal that (1) the network degree is decreased in the southwest to northwest direction, (2) the timing of 50th percentile precipitation within a year influences the spatial distribution of degree, (3) the timing is inversely related to elevation, and (4) the lower elevation greatly influences connectivity of the sites. The study highlights that edit distance could be a promising alternative to analyze event-like data by incorporating event time and amplitude and constructing complex networks of climate extremes. Y1 - 2022 U6 - https://doi.org/10.1063/5.0072520 SN - 1054-1500 SN - 1089-7682 VL - 32 IS - 1 PB - American Institute of Physics CY - Woodbury, NY ER - TY - JOUR A1 - Marwan, Norbert T1 - Challenges and perspectives in recurrence analyses of event time series JF - Frontiers in applied mathematics and statistics N2 - The analysis of event time series is in general challenging. Most time series analysis tools are limited for the analysis of this kind of data. Recurrence analysis, a powerful concept from nonlinear time series analysis, provides several opportunities to work with event data and even for the most challenging task of comparing event time series with continuous time series. Here, the basic concept is introduced, the challenges are discussed, and the future perspectives are summarized. KW - event time series KW - extreme events KW - recurrence analysis KW - edit distance KW - synchronization Y1 - 2023 U6 - https://doi.org/10.3389/fams.2023.1129105 SN - 2297-4687 VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Ladeira, Guenia A1 - Marwan, Norbert A1 - Destro-Filho, Joao-Batista A1 - Ramos, Camila Davi A1 - Lima, Gabriela T1 - Frequency spectrum recurrence analysis JF - Scientific reports N2 - In this paper, we present the new frequency spectrum recurrence analysis technique by means of electro-encephalon signals (EES) analyses. The technique is suitable for time series analysis with noise and disturbances. EES were collected, and alpha waves of the occipital region were analysed by comparing the signals from participants in two states, eyes open and eyes closed. Firstly, EES were characterized and analysed by means of techniques already known to compare with the results of the innovative technique that we present here. We verified that, standard recurrence quantification analysis by means of EES time series cannot statistically distinguish the two states. However, the new frequency spectrum recurrence quantification exhibit quantitatively whether the participants have their eyes open or closed. In sequence, new quantifiers are created for analysing the recurrence concentration on frequency bands. These analyses show that EES with similar frequency spectrum have different recurrence levels revealing different behaviours of the nervous system. The technique can be used to deepen the study on depression, stress, concentration level and other neurological issues and also can be used in any complex system. KW - Biomedical engineering KW - Brain injuries KW - Computational models KW - Computational neuroscience KW - Data acquisition KW - Data processing KW - Electrical and electronic engineering KW - Neural circuits KW - Visual system Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-77903-4 SN - 2045-2322 VL - 10 IS - 1 PB - Nature portfolio CY - Berlin ER - TY - JOUR A1 - Boers, Niklas A1 - Bookhagen, Bodo A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Spatiotemporal characteristics and synchronization of extreme rainfall in South America with focus on the Andes Mountain range JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - The South American Andes are frequently exposed to intense rainfall events with varying moisture sources and precipitation-forming processes. In this study, we assess the spatiotemporal characteristics and geographical origins of rainfall over the South American continent. Using high-spatiotemporal resolution satellite data (TRMM 3B42 V7), we define four different types of rainfall events based on their (1) high magnitude, (2) long temporal extent, (3) large spatial extent, and (4) high magnitude, long temporal and large spatial extent combined. In a first step, we analyze the spatiotemporal characteristics of these events over the entire South American continent and integrate their impact for the main Andean hydrologic catchments. Our results indicate that events of type 1 make the overall highest contributions to total seasonal rainfall (up to 50%). However, each consecutive episode of the infrequent events of type 4 still accounts for up to 20% of total seasonal rainfall in the subtropical Argentinean plains. In a second step, we employ complex network theory to unravel possibly non-linear and long-ranged climatic linkages for these four event types on the high-elevation Altiplano-Puna Plateau as well as in the main river catchments along the foothills of the Andes. Our results suggest that one to two particularly large squall lines per season, originating from northern Brazil, indirectly trigger large, long-lasting thunderstorms on the Altiplano Plateau. In general, we observe that extreme rainfall in the catchments north of approximately 20 degrees S typically originates from the Amazon Basin, while extreme rainfall at the eastern Andean foothills south of 20 degrees S and the Puna Plateau originates from southeastern South America. KW - Extreme rainfall KW - Synchronization KW - Complex networks KW - South American monsoon system Y1 - 2016 U6 - https://doi.org/10.1007/s00382-015-2601-6 SN - 0930-7575 SN - 1432-0894 VL - 46 SP - 601 EP - 617 PB - Springer CY - New York ER - TY - JOUR A1 - Rheinwalt, Aljoscha A1 - Boers, Niklas A1 - Marwan, Norbert A1 - Kurths, Jürgen A1 - Hoffmann, Peter A1 - Gerstengarbe, Friedrich-Wilhelm A1 - Werner, Peter T1 - Non-linear time series analysis of precipitation events using regional climate networks for Germany JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - Synchronous occurrences of heavy rainfall events and the study of their relation in time and space are of large socio-economical relevance, for instance for the agricultural and insurance sectors, but also for the general well-being of the population. In this study, the spatial synchronization structure is analyzed as a regional climate network constructed from precipitation event series. The similarity between event series is determined by the number of synchronous occurrences. We propose a novel standardization of this number that results in synchronization scores which are not biased by the number of events in the respective time series. Additionally, we introduce a new version of the network measure directionality that measures the spatial directionality of weighted links by also taking account of the effects of the spatial embedding of the network. This measure provides an estimate of heavy precipitation isochrones by pointing out directions along which rainfall events synchronize. We propose a climatological interpretation of this measure in terms of propagating fronts or event traces and confirm it for Germany by comparing our results to known atmospheric circulation patterns. KW - Rainfall KW - Complex networks KW - Precipitation events KW - Anisotropy KW - Dominant link directions KW - Isochrones KW - Event synchronization Y1 - 2016 U6 - https://doi.org/10.1007/s00382-015-2632-z SN - 0930-7575 SN - 1432-0894 VL - 46 SP - 1065 EP - 1074 PB - Springer CY - New York ER - TY - JOUR A1 - Donges, Jonathan A1 - Donner, Reik Volker A1 - Rehfeld, Kira A1 - Marwan, Norbert A1 - Trauth, Martin H. A1 - Kurths, Jürgen T1 - Identification of dynamical transitions in marine palaeoclimate records by recurrence network analysis JF - Nonlinear processes in geophysics N2 - The analysis of palaeoclimate time series is usually affected by severe methodological problems, resulting primarily from non-equidistant sampling and uncertain age models. As an alternative to existing methods of time series analysis, in this paper we argue that the statistical properties of recurrence networks - a recently developed approach - are promising candidates for characterising the system's nonlinear dynamics and quantifying structural changes in its reconstructed phase space as time evolves. In a first order approximation, the results of recurrence network analysis are invariant to changes in the age model and are not directly affected by non-equidistant sampling of the data. Specifically, we investigate the behaviour of recurrence network measures for both paradigmatic model systems with non-stationary parameters and four marine records of long-term palaeoclimate variations. We show that the obtained results are qualitatively robust under changes of the relevant parameters of our method, including detrending, size of the running window used for analysis, and embedding delay. We demonstrate that recurrence network analysis is able to detect relevant regime shifts in synthetic data as well as in problematic geoscientific time series. This suggests its application as a general exploratory tool of time series analysis complementing existing methods. Y1 - 2011 U6 - https://doi.org/10.5194/npg-18-545-2011 SN - 1023-5809 VL - 18 IS - 5 SP - 545 EP - 562 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Donges, Jonathan A1 - Zou, Yong A1 - Marwan, Norbert A1 - Kurths, Jürgen T1 - Complex networks in climate dynamics : comparing linear and nonlinear network construction methods N2 - Complex network theory provides a powerful framework to statistically investigate the topology of local and non- local statistical interrelationships, i.e. teleconnections, in the climate system. Climate networks constructed from the same global climatological data set using the linear Pearson correlation coefficient or the nonlinear mutual information as a measure of dynamical similarity between regions, are compared systematically on local, mesoscopic and global topological scales. A high degree of similarity is observed on the local and mesoscopic topological scales for surface air temperature fields taken from AOGCM and reanalysis data sets. We find larger differences on the global scale, particularly in the betweenness centrality field. The global scale view on climate networks obtained using mutual information offers promising new perspectives for detecting network structures based on nonlinear physical processes in the climate system. Y1 - 2009 UR - http://www.springerlink.com/content/1951-6355 U6 - https://doi.org/10.1140/epjst/e2009-01098-2 SN - 1951-6355 ER -