TY - JOUR A1 - Wendt, Martin A1 - Husser, Tim-Oliver A1 - Kamann, Sebastian A1 - Monreal-Ibero, Ana A1 - Richter, Philipp A1 - Brinchmann, Jarle A1 - Dreizler, Stefan A1 - Weilbacher, Peter Michael A1 - Wisotzki, Lutz T1 - Mapping diffuse interstellar bands in the local ISM on small scales via MUSE 3D spectroscopy A pilot study based on globular cluster NGC 6397 JF - Astronomy and astrophysics : an international weekly journal N2 - Context. We map the interstellar medium (ISM) including the diffuse interstellar bands (DIBs) in absorption toward the globular cluster NGC6397 using VLT/MUSE. Assuming the absorbers are located at the rim of the Local Bubble we trace structures on the order of mpc (milliparsec, a few thousand AU). Aims. We aimed to demonstrate the feasibility to map variations of DIBs on small scales with MUSE. The sightlines defined by binned stellar spectra are separated by only a few arcseconds and we probe the absorption within a physically connected region. Methods. This analysis utilized the fitting residuals of individual stellar spectra of NGC6397 member stars and analyzed lines from neutral species and several DIBs in Voronoi-binned composite spectra with high signal-to-noise ratio (S/N). Results. This pilot study demonstrates the power of MUSE for mapping the local ISM on very small scales which provides a new window for ISM observations. We detect small scale variations in Na-I and K-I as well as in several DIBs within few arcseconds, or mpc with regard to the Local Bubble. We verify the suitability of the MUSE 3D spectrograph for such measurements and gain new insights by probing a single physical absorber with multiple sight lines. KW - techniques: imaging spectroscopy KW - globular clusters: individual: NGC 6397 KW - dust, extinction KW - ISM: structure KW - ISM: lines and bands Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201629816 SN - 1432-0746 VL - 607 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Finley, Hayley A1 - Bouche, Nicolas A1 - Contini, Thierry A1 - Epinat, Benoit A1 - Bacon, Roland A1 - Brinchmann, Jarle A1 - Cantalupo, Sebastiano A1 - Erroz-Ferrer, Santiago A1 - Marino, Aella Anna A1 - Maseda, Michael A1 - Richard, Johan A1 - Schroetter, Ilane A1 - Verhamme, Anne A1 - Weilbacher, Peter Michael A1 - Wendt, Martin A1 - Wisotzki, Lutz T1 - Galactic winds with MUSE: A direct detection of Fe II* emission from a z=1.29 galaxy JF - Astronomy and astrophysics : an international weekly journal N2 - Emission signatures from galactic winds provide an opportunity to directly map the outflowing gas, but this is traditionally challenging because of the low surface brightness. Using very deep observations (27 h) of the Hubble Deep Field South with the Multi Unit Spectroscopic Explorer (MUSE) instrument, we identify signatures of an outflow in both emission and absorption from a spatially resolved galaxy at z = 1.29 with a stellar mass M-star = 8 x 10(9) M-circle dot, star formation rate SFR = 77(-25)(+40) M-circle dot yr(-1), and star formation rate surface brightness Sigma(SFR) = 1.6 M-circle dot kpc(-2) within the [OII] lambda lambda 3727, 3729 half-light radius R-1/2, ([OII]) = 2.76 +/- 0.17 kpc. From a component of the strong resonant Mg II and Fe II absorptions at -350 km s(-1), we infer a mass outflow rate that is comparable to the star formation rate. We detect non-resonant Fe II* emission, at lambda 2365, lambda 2396, lambda 2612, and lambda 2626, at 1.2-2.4-1.5-2.7 x 10-(18) erg s(-1) cm(-2) respectively. The flux ratios are consistent with the expectations for optically thick gas. By combining the four non-resonant Fe II* emission lines, we spatially map the Fe II* emission from an individual galaxy for the first time. The Fe II* emission has an elliptical morphology that is roughly aligned with the galaxy minor kinematic axis, and its integrated half-light radius, R-1/2, (Fe II*) = 4.1 +/- 0.4 kpc, is 70% larger than the stellar continuum (R-1/2,(star) similar or equal to 2.34 +/- 0.17) or the [O II] nebular line. Moreover, the Fe II* emission shows a blue wing extending up to -400 km s(-1), which is more pronounced along the galaxy minor kinematic axis and reveals a C-shaped pattern in a p - v diagram along that axis. These features are consistent with a bi-conical outflow. KW - galaxies: evolution KW - galaxies: formation KW - galaxies: starburst KW - galaxies: ISM KW - ISM: jets and outflows KW - ultraviolet: ISM Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201730428 SN - 1432-0746 VL - 605 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Schroetter, I. A1 - Bouche, Nicolas A1 - Wendt, Martin A1 - Contini, Thierry A1 - Finley, H. A1 - Pello, R. A1 - Bacon, Roland A1 - Cantalupo, Sebastiano A1 - Marino, Raffaella Anna A1 - Richard, J. A1 - Lilly, S. J. A1 - Schaye, Joop A1 - Soto, K. A1 - Steinmetz, Matthias A1 - Straka, Lorrie A. A1 - Wisotzki, Lutz T1 - MUSE GAS FLOW AND WIND (MEGAFLOW). I. FIRST MUSE RESULTS ON BACKGROUND QUASARS JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The physical properties of galactic winds are one of the keys to understand galaxy formation and evolution. These properties can be constrained thanks to background quasar lines of sight (LOS) passing near star-forming galaxies (SFGs). We present the first results of the MusE GAs FLOw and Wind survey obtained from two quasar fields, which have eight Mg II absorbers of which three have rest equivalent width greater than 0.8 angstrom. With the new Multi Unit Spectroscopic Explorer (MUSE) spectrograph on the Very Large Telescope (VLT), we detect six (75%) Mg II host galaxy candidates within a radius of 30. from the quasar LOS. Out of these six galaxy-quasar pairs, from geometrical argument, one is likely probing galactic outflows, where two are classified as "ambiguous,"two are likely probing extended gaseous disks and one pair seems to be a merger. We focus on the wind-pair and constrain the outflow using a high-resolution quasar spectra from the Ultraviolet and Visual Echelle Spectrograph. Assuming the metal absorption to be due to ga;s flowing out of the detected galaxy through a cone along the minor axis, we find outflow velocities in the order of approximate to 150 km s(-1) (i.e., smaller than the escape velocity) with a loading factor, eta = M-out/SFR, of approximate to 0.7. We see evidence for an open conical flow, with a low-density inner core. In the future, MUSE will provide us with about 80 multiple galaxy-quasar pairs in two dozen fields. KW - galaxies: evolution KW - galaxies: formation KW - intergalactic medium KW - quasars: individual (SDSS J213748+001220, SDSS J215200+062516) Y1 - 2016 U6 - https://doi.org/10.3847/1538-4357/833/1/39 SN - 0004-637X SN - 1538-4357 VL - 833 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Wisotzki, Lutz A1 - Bacon, R. A1 - Brinchmann, J. A1 - Cantalupo, S. A1 - Richter, Philipp A1 - Schaye, J. A1 - Schmidt, Kasper Borello A1 - Urrutia, Tanya A1 - Weilbacher, Peter Michael A1 - Akhlaghi, M. A1 - Bouche, N. A1 - Contini, T. A1 - Guiderdoni, B. A1 - Herenz, E. C. A1 - Inami, H. A1 - Kerutt, Josephine Victoria A1 - Leclercq, F. A1 - Marino, R. A. A1 - Maseda, M. A1 - Monreal-Ibero, A. A1 - Nanayakkara, T. A1 - Richard, J. A1 - Saust, R. A1 - Steinmetz, Matthias A1 - Wendt, Martin T1 - Nearly all the sky is covered by Lyman-alpha emission around high-redshift galaxies JF - Nature : the international weekly journal of science N2 - Galaxies are surrounded by large reservoirs of gas, mostly hydrogen, that are fed by inflows from the intergalactic medium and by outflows from galactic winds. Absorption-line measurements along the lines of sight to bright and rare background quasars indicate that this circumgalactic medium extends far beyond the starlight seen in galaxies, but very little is known about its spatial distribution. The Lyman-alpha transition of atomic hydrogen at a wavelength of 121.6 nanometres is an important tracer of warm (about 104 kelvin) gas in and around galaxies, especially at cosmological redshifts greater than about 1.6 at which the spectral line becomes observable from the ground. Tracing cosmic hydrogen through its Lyman-a emission has been a long-standing goal of observational astrophysics(1-3), but the extremely low surface brightness of the spatially extended emission is a formidable obstacle. A new window into circumgalactic environments was recently opened by the discovery of ubiquitous extended Lyman-alpha emission from hydrogen around high-redshift galaxies(4,5). Such measurements were previously limited to especially favourable systems(6-8) or to the use of massive statistical averaging(9,10) because of the faintness of this emission. Here we report observations of low-surface-brightness Lyman-alpha emission surrounding faint galaxies at redshifts between 3 and 6. We find that the projected sky coverage approaches 100 per cent. The corresponding rate of incidence (the mean number of Lyman-alpha emitters penetrated by any arbitrary line of sight) is well above unity and similar to the incidence rate of high-column-density absorbers frequently detected in the spectra of distant quasars(11-14). This similarity suggests that most circumgalactic atomic hydrogen at these redshifts has now been detected in emission. Y1 - 2018 U6 - https://doi.org/10.1038/s41586-018-0564-6 SN - 0028-0836 SN - 1476-4687 VL - 562 IS - 7726 SP - 229 EP - 232 PB - Nature Publ. Group CY - London ER -