TY - BOOK A1 - Kuban, Robert A1 - Rotta, Randolf A1 - Nolte, Jörg A1 - Chromik, Jonas A1 - Beilharz, Jossekin Jakob A1 - Pirl, Lukas A1 - Friedrich, Tobias A1 - Lenzner, Pascal A1 - Weyand, Christopher A1 - Juiz, Carlos A1 - Bermejo, Belen A1 - Sauer, Joao A1 - Coelh, Leandro dos Santos A1 - Najafi, Pejman A1 - Pünter, Wenzel A1 - Cheng, Feng A1 - Meinel, Christoph A1 - Sidorova, Julia A1 - Lundberg, Lars A1 - Vogel, Thomas A1 - Tran, Chinh A1 - Moser, Irene A1 - Grunske, Lars A1 - Elsaid, Mohamed Esameldin Mohamed A1 - Abbas, Hazem M. A1 - Rula, Anisa A1 - Sejdiu, Gezim A1 - Maurino, Andrea A1 - Schmidt, Christopher A1 - Hügle, Johannes A1 - Uflacker, Matthias A1 - Nozza, Debora A1 - Messina, Enza A1 - Hoorn, André van A1 - Frank, Markus A1 - Schulz, Henning A1 - Alhosseini Almodarresi Yasin, Seyed Ali A1 - Nowicki, Marek A1 - Muite, Benson K. A1 - Boysan, Mehmet Can A1 - Bianchi, Federico A1 - Cremaschi, Marco A1 - Moussa, Rim A1 - Abdel-Karim, Benjamin M. A1 - Pfeuffer, Nicolas A1 - Hinz, Oliver A1 - Plauth, Max A1 - Polze, Andreas A1 - Huo, Da A1 - Melo, Gerard de A1 - Mendes Soares, Fábio A1 - Oliveira, Roberto Célio Limão de A1 - Benson, Lawrence A1 - Paul, Fabian A1 - Werling, Christian A1 - Windheuser, Fabian A1 - Stojanovic, Dragan A1 - Djordjevic, Igor A1 - Stojanovic, Natalija A1 - Stojnev Ilic, Aleksandra A1 - Weidmann, Vera A1 - Lowitzki, Leon A1 - Wagner, Markus A1 - Ifa, Abdessatar Ben A1 - Arlos, Patrik A1 - Megia, Ana A1 - Vendrell, Joan A1 - Pfitzner, Bjarne A1 - Redondo, Alberto A1 - Ríos Insua, David A1 - Albert, Justin Amadeus A1 - Zhou, Lin A1 - Arnrich, Bert A1 - Szabó, Ildikó A1 - Fodor, Szabina A1 - Ternai, Katalin A1 - Bhowmik, Rajarshi A1 - Campero Durand, Gabriel A1 - Shevchenko, Pavlo A1 - Malysheva, Milena A1 - Prymak, Ivan A1 - Saake, Gunter ED - Meinel, Christoph ED - Polze, Andreas ED - Beins, Karsten ED - Strotmann, Rolf ED - Seibold, Ulrich ED - Rödszus, Kurt ED - Müller, Jürgen T1 - HPI Future SOC Lab – Proceedings 2019 N2 - The “HPI Future SOC Lab” is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2019. Selected projects have presented their results on April 9th and November 12th 2019 at the Future SOC Lab Day events. N2 - Das Future SOC Lab am HPI ist eine Kooperation des Hasso-Plattner-Instituts mit verschiedenen Industriepartnern. Seine Aufgabe ist die Ermöglichung und Förderung des Austausches zwischen Forschungsgemeinschaft und Industrie. Am Lab wird interessierten Wissenschaftlern eine Infrastruktur von neuester Hard- und Software kostenfrei für Forschungszwecke zur Verfügung gestellt. Dazu zählen teilweise noch nicht am Markt verfügbare Technologien, die im normalen Hochschulbereich in der Regel nicht zu finanzieren wären, bspw. Server mit bis zu 64 Cores und 2 TB Hauptspeicher. Diese Angebote richten sich insbesondere an Wissenschaftler in den Gebieten Informatik und Wirtschaftsinformatik. Einige der Schwerpunkte sind Cloud Computing, Parallelisierung und In-Memory Technologien. In diesem Technischen Bericht werden die Ergebnisse der Forschungsprojekte des Jahres 2019 vorgestellt. Ausgewählte Projekte stellten ihre Ergebnisse am 09. April und 12. November 2019 im Rahmen des Future SOC Lab Tags vor. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 158 KW - Future SOC Lab KW - research projects KW - multicore architectures KW - in-memory technology KW - cloud computing KW - machine learning KW - artifical intelligence KW - Future SOC Lab KW - Forschungsprojekte KW - Multicore Architekturen KW - In-Memory Technologie KW - Cloud Computing KW - maschinelles Lernen KW - künstliche Intelligenz Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-597915 SN - 978-3-86956-564-4 SN - 1613-5652 SN - 2191-1665 IS - 158 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Sauer, Michael A1 - Grebe, Markus T1 - Plant cell biology BT - PIN polarity maintained JF - Current biology : CB N2 - PIN-FORMED (PIN) polar protein localization directs transport of the growth and developmental regulator auxin in plants. Once established after cytokinesis, PIN polarity requires maintenance. Now, direct interactions between PIN, MAB4/MEL and PID proteins suggest self-reinforced maintenance of PIN polarity through limiting lateral diffusion. Y1 - 2021 U6 - https://doi.org/10.1016/j.cub.2021.03.070 SN - 0960-9822 SN - 1879-0445 VL - 31 IS - 9 SP - R449 EP - R451 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Wartenberg, Maria A1 - Ling, Frederike C. A1 - Müschen, Markus A1 - Klein, Florian A1 - Acker, Helmut A1 - Gassmann, Max A1 - Petrat, Kerstin A1 - Pütz, Volker A1 - Hescheler, Jürgen A1 - Sauer, Heinrich T1 - Regulation of the multidrug resistance transporter P-glycorotein by hypoxia-inducible factor (HIF-1) and reactive oxygen species Y1 - 2003 ER - TY - JOUR A1 - Klein, Florian A1 - Feldhahn, Niklas A1 - Lee, Sanggyu A1 - Wang, Hui A1 - Ciuffi, Fiammetta A1 - von Elstermann, Mirko A1 - Toribio, Maria L. A1 - Sauer, Heinrich A1 - Wartenberg, Maria A1 - Barath, Varun Singh A1 - Krönke, Martin A1 - Wernet, Peter A1 - Rowley, Janet D. A1 - Müschen, Markus T1 - T lymphoid differentiation in human bone marrow Y1 - 2003 ER - TY - GEN A1 - Prát, Tomáš A1 - Hajny ́, Jakub A1 - Grunewald, Wim A1 - Vasileva, Mina A1 - Molnár, Gergely A1 - Tejos, Ricardo A1 - Schmid, Markus A1 - Sauer, Michael A1 - Friml, Jiří T1 - WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17-and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain-and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1123 KW - apical-basal axis KW - arabidopsis-thaliana KW - root gravitropism KW - DNA-binding KW - gene-expression KW - transport KW - efflux KW - canalization KW - plants KW - phosphorylation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446331 SN - 1866-8372 IS - 1123 ER - TY - JOUR A1 - Prat, Tomas A1 - Hajny, Jakub A1 - Grunewald, Wim A1 - Vasileva, Mina A1 - Molnar, Gergely A1 - Tejos, Ricardo A1 - Schmid, Markus A1 - Sauer, Michael A1 - Friml, Jiří T1 - WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity JF - PLoS Genetics : a peer-reviewed, open-access journal N2 - Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17-and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain-and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development. Y1 - 2018 U6 - https://doi.org/10.1371/journal.pgen.1007177 SN - 1553-7404 VL - 14 IS - 1 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Collenburg, Lena A1 - Walter, Tim A1 - Burgert, Anne A1 - Mueller, Nora A1 - Seibel, Juergen A1 - Japtok, Lukasz A1 - Kleuser, Burkhard A1 - Sauer, Markus A1 - Schneider-Schaulies, Sibylle T1 - A Functionalized Sphingolipid Analogue for Studying Redistribution during Activation in Living T Cells JF - The journal of immunology N2 - Sphingolipids are major components of the plasma membrane. In particular, ceramide serves as an essential building hub for complex sphingolipids, but also as an organizer of membrane domains segregating receptors and signalosomes. Sphingomyelin breakdown as a result of sphingomyelinase activation after ligation of a variety of receptors is the predominant source of ceramides released at the plasma membrane. This especially applies to T lymphocytes where formation of ceramide-enriched membrane microdomains modulates TCR signaling. Because ceramide release and redistribution occur very rapidly in response to receptor ligation, novel tools to further study these processes in living T cells are urgently needed. To meet this demand, we synthesized nontoxic, azido-functionalized ceramides allowing for bio-orthogonal click-reactions to fluorescently label incorporated ceramides, and thus investigate formation of ceramide-enriched domains. Azido-functionalized C-6-ceramides were incorporated into and localized within plasma membrane microdomains and proximal vesicles in T cells. They segregated into clusters after TCR, and especially CD28 ligation, indicating efficient sorting into plasma membrane domains associated with T cell activation; this was abolished upon sphingomyelinase inhibition. Importantly, T cell activation was not abrogated upon incorporation of the compound, which was efficiently excluded from the immune synapse center as has previously been seen in Ab-based studies using fixed cells. Therefore, the functionalized ceramides are novel, highly potent tools to study the subcellular redistribution of ceramides in the course of T cell activation. Moreover, they will certainly also be generally applicable to studies addressing rapid stimulation-mediated ceramide release in living cells. Y1 - 2016 U6 - https://doi.org/10.4049/jimmunol.1502447 SN - 0022-1767 SN - 1550-6606 VL - 196 SP - 3951 EP - 3962 PB - American Assoc. of Immunologists CY - Bethesda ER - TY - JOUR A1 - Derakhshani, Shaghayegh A1 - Kurz, Andreas A1 - Japtok, Lukasz A1 - Schumacher, Fabian A1 - Pilgram, Lisa A1 - Steinke, Maria A1 - Kleuser, Burkhard A1 - Sauer, Markus A1 - Schneider-Schaulies, Sibylle A1 - Avota, Elita T1 - Measles Virus Infection Fosters Dendritic Cell Motility in a 3D Environment to Enhance Transmission to Target Cells in the Respiratory Epithelium JF - Frontiers in immunology N2 - Transmission of measles virus (MV) from dendritic to airway epithelial cells is considered as crucial to viral spread late in infection. Therefore, pathways and effectors governing this process are promising targets for intervention. To identify these, we established a 3D respiratory tract model where MV transmission by infected dendritic cells (DCs) relied on the presence of nectin-4 on H358 lung epithelial cells. Access to recipient cells is an important prerequisite for transmission, and we therefore analyzed migration of MV-exposed DC cultures within the model. Surprisingly, enhanced motility toward the epithelial layer was observed for MV-infected DCs as compared to their uninfected siblings. This occurred independently of factors released from H358 cells indicating that MV infection triggered cytoskeletal remodeling associated with DC polarization enforced velocity. Accordingly, the latter was also observed for MV-infected DCs in collagen matrices and was particularly sensitive to ROCK inhibition indicating infected DCs preferentially employed the amoeboid migration mode. This was also implicated by loss of podosomes and reduced filopodial activity both of which were retained in MV-exposed uninfected DCs. Evidently, sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) as produced in response to virus-infection in DCs contributed to enhanced velocity because this was abrogated upon inhibition of sphingosine kinase activity. These findings indicate that MV infection promotes a push-and-squeeze fast amoeboid migration mode via the SphK/S1P system characterized by loss of filopodia and podosome dissolution. Consequently, this enables rapid trafficking of virus toward epithelial cells during viral exit. KW - dendritic cell KW - cell migration KW - measles virus KW - 3D tissue model KW - sphingosine-1-phosphate Y1 - 2019 U6 - https://doi.org/10.3389/fimmu.2019.01294 SN - 1664-3224 VL - 10 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Fink, Julian A1 - Schumacher, Fabian A1 - Schlegel, Jan A1 - Stenzel, Philipp A1 - Wigger, Dominik A1 - Sauer, Markus A1 - Kleuser, Burkhard A1 - Seibel, Jürgen T1 - Azidosphinganine enables metabolic labeling and detection of sphingolipid de novo synthesis JF - Organic & biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry N2 - Here were report the combination of biocompatible click chemistry of omega-azidosphinganine with fluorescence microscopy and mass spectrometry as a powerful tool to elaborate the sphingolipid metabolism. The azide probe was efficiently synthesized over 13 steps starting from l-serine in an overall yield of 20% and was used for live-cell fluorescence imaging of the endoplasmic reticulum in living cells by bioorthogonal click reaction with a DBCO-labeled fluorophore revealing that the incorporated analogue is mainly localized in the endoplasmic membrane like the endogenous species. A LC-MS(/MS)-based microsomal in vitro assay confirmed that omega-azidosphinganine mimics the natural species enabling the identification and analysis of metabolic breakdown products of sphinganine as a key starting intermediate in the complex sphingolipid biosynthetic pathways. Furthermore, the sphinganine-fluorophore conjugate after click reaction was enzymatically tolerated to form its dihydroceramide and ceramide metabolites. Thus, omega-azidosphinganine represents a useful biofunctional tool for metabolic investigations both by in vivo fluorescence imaging of the sphingolipid subcellular localization in the ER and by in vitro high-resolution mass spectrometry analysis. This should reveal novel insights of the molecular mechanisms sphingolipids and their processing enzymes have e.g. in infection. Y1 - 2021 U6 - https://doi.org/10.1039/d0ob02592e SN - 1477-0520 SN - 1477-0539 VL - 19 IS - 10 SP - 2203 EP - 2212 PB - Royal Society of Chemistry CY - Cambridge ER -