TY - JOUR A1 - Balazadeh, Salma A1 - Siddiqui, Hamad A1 - Allu, Annapurna Devi A1 - Matallana-Ramirez, Lilian Paola A1 - Caldana, Camila A1 - Mehrnia, Mohammad A1 - Zanor, Maria-Inés A1 - Koehler, Barbara A1 - Müller-Röber, Bernd T1 - A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence N2 - P>The onset and progression of senescence are under genetic and environmental control. The Arabidopsis thaliana NAC transcription factor ANAC092 (also called AtNAC2 and ORE1) has recently been shown to control age-dependent senescence, but its mode of action has not been analysed yet. To explore the regulatory network administered by ANAC092 we performed microarray-based expression profiling using estradiol-inducible ANAC092 overexpression lines. Approximately 46% of the 170 genes up-regulated upon ANAC092 induction are known senescence-associated genes, suggesting that the NAC factor exerts its role in senescence through a regulatory network that includes many of the genes previously reported to be senescence regulated. We selected 39 candidate genes and confirmed their time-dependent response to enhanced ANAC092 expression by quantitative RT-PCR. We also found that the majority of them (24 genes) are up-regulated by salt stress, a major promoter of plant senescence, in a manner similar to that of ANAC092, which itself is salt responsive. Furthermore, 24 genes like ANAC092 turned out to be stage-dependently expressed during seed growth with low expression at early and elevated expression at late stages of seed development. Disruption of ANAC092 increased the rate of seed germination under saline conditions, whereas the opposite occurred in respective overexpression plants. We also detected a delay of salinity-induced chlorophyll loss in detached anac092-1 mutant leaves. Promoter-reporter (GUS) studies revealed transcriptional control of ANAC092 expression during leaf and flower ageing and in response to salt stress. We conclude that ANAC092 exerts its functions during senescence and seed germination through partly overlapping target gene sets. Y1 - 2010 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0960-7412 U6 - https://doi.org/10.1111/j.1365-313X.2010.04151.x SN - 0960-7412 ER - TY - JOUR A1 - Mehrnia, Mohammad A1 - Balazadeh, Salma A1 - Zanor, Maria-Ines A1 - Müller-Röber, Bernd T1 - EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in arabidopsis JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - We report about ERF BUD ENHANCER (EBE; At5g61890), a transcription factor that affects cell proliferation as well as axillary bud outgrowth and shoot branching in Arabidopsis (Arabidopsis thaliana). EBE encodes a member of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor superfamily; the gene is strongly expressed in proliferating cells and is rapidly and transiently up-regulated in axillary meristems upon main stem decapitation. Overexpression of EBE promotes cell proliferation in growing calli, while the opposite is observed in EBE-RNAi lines. EBE overexpression also stimulates axillary bud formation and outgrowth, while repressing it results in inhibition of bud growth. Global transcriptome analysis of estradiol-inducible EBE overexpression lines revealed 48 EBE early-responsive genes, of which 14 were up-regulated and 34 were downregulated. EBE activates several genes involved in cell cycle regulation and dormancy breaking, including D-type cyclin CYCD3; 3, transcription regulator DPa, and BRCA1-ASSOCIATED RING DOMAIN1. Among the down-regulated genes were DORMANCY-ASSOCIATED PROTEIN1 (AtDRM1), AtDRM1 homolog, MEDIATOR OF ABA-REGULATED DORMANCY1, and ZINC FINGER HOMEODOMAIN5. Our data indicate that the effect of EBE on shoot branching likely results from an activation of genes involved in cell cycle regulation and dormancy breaking. Y1 - 2013 U6 - https://doi.org/10.1104/pp.113.214049 SN - 0032-0889 VL - 162 IS - 2 SP - 842 EP - 857 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Wu, Anhui A1 - Allu, Annapurna Devi A1 - Garapati, Prashanth A1 - Siddiqui, Hamad A1 - Dortay, Hakan A1 - Zanor, Maria-Ines A1 - Asensi-Fabado, Maria Amparo A1 - Munne-Bosch, Sergi A1 - Antonio, Carla A1 - Tohge, Takayuki A1 - Fernie, Alisdair R. A1 - Kaufmann, Kerstin A1 - Xue, Gang-Ping A1 - Müller-Röber, Bernd A1 - Balazadeh, Salma T1 - Jungbrunnen1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in arabidopsis JF - The plant cell N2 - The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H2O2)-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1 overexpression strongly delays senescence, dampens intracellular H2O2 levels, and enhances tolerance to various abiotic stresses, whereas in jub1-1 knockdown plants, precocious senescence and lowered abiotic stress tolerance are observed. A JUB1 binding site containing a RRYGCCGT core sequence is present in the promoter of DREB2A, which plays an important role in abiotic stress responses. JUB1 transactivates DREB2A expression in mesophyll cell protoplasts and transgenic plants and binds directly to the DREB2A promoter. Transcriptome profiling of JUB1 overexpressors revealed elevated expression of several reactive oxygen species-responsive genes, including heat shock protein and glutathione S-transferase genes, whose expression is further induced by H2O2 treatment. Metabolite profiling identified elevated Pro and trehalose levels in JUB1 overexpressors, in accordance with their enhanced abiotic stress tolerance. We suggest that JUB1 constitutes a central regulator of a finely tuned control system that modulates cellular H2O2 level and primes the plants for upcoming stress through a gene regulatory network that involves DREB2A. Y1 - 2012 U6 - https://doi.org/10.1105/tpc.111.090894 SN - 1040-4651 VL - 24 IS - 2 SP - 482 EP - 506 PB - American Society of Plant Physiologists CY - Rockville ER -